Discussion of this paper got quite heated on Lucia Liljegren’s blog and elsewhere a year or so ago. Now it has been published in a high impact journal. Hopefully Lucia might stop by to explain her objections, and tell us what if anything has changed in this final version. This is potentially an important paper. It remains to be seen if it will become accepted and built on by people working in the area of atmospheric thermodynamics. The authors website is interesting: http://www.bioticregulation.ru/
Atmos. Chem. Phys., 13, 1039-1056, 2013
www.atmos-chem-phys.net/13/1039/2013/
doi:10.5194/acp-13-1039-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics
A. M. Makarieva1,2, V. G. Gorshkov1,2, D. Sheil3,4,5, A. D. Nobre6,7, and B.-L. Li2
1Theoretical Physics Division, Petersburg Nuclear Physics Institute, 188300, Gatchina, St. Petersburg, Russia
2XIEG-UCR International Center for Arid Land Ecology, University of California, Riverside, CA 92521, USA
3School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia
4Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, Kabale, Uganda
5Center for International Forestry Research, P.O. Box 0113 BOCBD, Bogor 16000, Indonesia
6Centro de Ciência do Sistema Terrestre INPE, São José dos Campos SP 12227-010, Brazil
7Instituto Nacional de Pesquisas da Amazônia, Manaus AM 69060-001, Brazil
Abstract. Phase transitions of atmospheric water play a ubiquitous role in the Earth’s climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns.
(more…)