
Latest output from R.J. Salvador’s solar variation model, now up to a 91% correlation with the sunspot record since 1749.
My thanks to R.J. Salvador for this guest posting of his solar variation model based on planetary periods. It’s forecast is in good agreement with that made by Tim Channon back in Feb 2011 using a different technique and different data (Judith Lean’s TSI reconstruction). R.J.’s model is available to interested parties known to the talkshop, make a request in comments for a copy (7meg .xls). R.J. asked me to include Sparks plots of Uranus orientation to the Sun which is included into the model as the 1/4 period of its orbit. Click for full size.
A Mathematical Model of the Sunspot Cycle for the past 1000 Years
By R.J. Salvador
Summary
Using many features of Ian Wilson’s Tidal Torque theory, a mathematical model of the sunspot cycle has been created that reproduces changing sunspot cycle lengths and has an 85% correlation to the sunspot numbers from 1749 to 2013. The model makes a reasonable representation of the sunspot cycle for the past 1000 years, placing all the solar minimums in their time periods. More importantly, I believe the model can be used to forecast future solar cycles out quantitatively for 30 years and directionally for 100 years. The forecast is for a solar minimum and quiet sun for the next 30 to 100 years. The model is a slowly changing chaotic system with patterns that are never exactly the same, much like a model of the weather. Inferences as to the causes of the sunspot cycle patterns can be made by looking at the models terms and relating them to aspects of the Tidal Torque theory and possibly Jovian magnetic field interactions.
The Model
The Tidal Torque theory proposed by Ian Wilson provides a system of interrelated consistent frequencies and now I believe a unique set within a narrow error range.
This model is simply four interacting waves but they are modulated to create an infinite possibility for sunspot formation.

















