Waves in Saturn’s rings give precise measurement of planet’s rotation rate

Posted: January 19, 2019 by oldbrew in Astrophysics, Measurement, modelling
Tags: ,

Saturn from the Cassini orbiter [image credit: NASA]


This has been a tricky problem for years as explained below, and now appears to have been resolved. But whether that’s the end of the story remains to be seen.

Saturn’s distinctive rings were observed in unprecedented detail by NASA’s Cassini spacecraft, and scientists have now used those observations to probe the interior of the giant planet and obtain the first precise determination of its rotation rate, reports Phys.org.

The length of a day on Saturn, according to their calculations, is 10 hours 33 minutes and 38 seconds.

The researchers studied wave patterns created within Saturn’s rings by the planet’s internal vibrations. In effect, the rings act as an extremely sensitive seismograph by responding to vibrations within the planet itself.

Similar to Earth’s vibrations from an earthquake, Saturn responds to perturbations by vibrating at frequencies determined by its internal structure. Heat-driven convection in the interior is the most likely source of the vibrations. These internal oscillations cause the density at any particular place within the planet to fluctuate, which makes the gravitational field outside the planet oscillate at the same frequencies.

“Particles in the rings feel this oscillation in the gravitational field. At places where this oscillation resonates with ring orbits, energy builds up and gets carried away as a wave,” explained Christopher Mankovich, a graduate student in astronomy and astrophysics at UC Santa Cruz.

Mankovich is lead author of a paper, published January 17 in the Astrophysical Journal, comparing the wave patterns in the rings with models of Saturn’s interior structure.

Most of the waves observed in Saturn’s rings are due to the gravitational effects of the moons orbiting outside the rings, said coauthor Jonathan Fortney, professor of astronomy and astrophysics at UC Santa Cruz. “But some of the features in the rings are due to the oscillations of the planet itself, and we can use those to understand the planet’s internal oscillations and internal structure,” he said.

Mankovich developed a set of models of the internal structure of Saturn, used them to predict the frequency spectrum of Saturn’s internal vibrations, and compared those predictions with the waves observed by Cassini in Saturn’s C ring. One of the main results of his analysis is the new calculation of Saturn’s rotation rate, which has been surprisingly difficult to measure.

As a gas giant planet, Saturn has no solid surface with landmarks that could be tracked as it rotates. Saturn is also unusual in having its magnetic axis nearly perfectly aligned with its rotational axis. Jupiter’s magnetic axis, like Earth’s, is not aligned with its rotational axis, which means the magnetic pole swings around as the planet rotates, enabling astronomers to measure a periodic signal in radio waves and calculate the rotation rate.

The rotation rate of 10:33:38 determined by Mankovich’s analysis is several minutes faster than previous estimates based on radiometry from the Voyager and Cassini spacecraft.

Continued here.

Comments

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s