What makes Saturn’s atmosphere so hot

Posted: April 7, 2020 by oldbrew in atmosphere, research, Temperature, wind
Tags: ,

Saturn’s aurora


The report says: ‘Density decreases with altitude, and the rate of decrease depends on temperature.’ Or is it the other way round, i.e. density influences temperature?

The upper layers in the atmospheres of gas giants—Saturn, Jupiter, Uranus and Neptune—are hot, just like Earth’s, says Phys.org.

But unlike Earth, the Sun is too far from these outer planets to account for the high temperatures. Their heat source has been one of the great mysteries of planetary science.

New analysis of data from NASA’s Cassini spacecraft finds a viable explanation for what’s keeping the upper layers of Saturn, and possibly the other gas giants, so hot: auroras at the planet’s north and south poles.

Electric currents, triggered by interactions between solar winds and charged particles from Saturn’s moons, spark the auroras and heat the upper atmosphere. (As with Earth’s northern lights, studying auroras tells scientists what’s going on in the planet’s atmosphere.)

The work, published today in Nature Astronomy, is the most complete mapping yet of both temperature and density of a gas giant’s upper atmosphere—a region that has been poorly understood.

“Understanding the dynamics really requires a global view. This dataset is the first time we’ve been able to look at the upper atmosphere from pole to pole while also seeing how temperature changes with depth,” said Zarah Brown, lead author of the study and a graduate student in the University of Arizona Lunar and Planetary Laboratory.

By building a complete picture of how heat circulates in the atmosphere, scientists are better able to understand how auroral electric currents heat the upper layers of Saturn’s atmosphere and drive winds.

The global wind system can distribute this energy, which is initially deposited near the poles toward the equatorial regions, heating them to twice the temperatures expected from the sun’s heating alone.

“The results are vital to our general understanding of planetary upper atmospheres and are an important part of Cassini’s legacy,” said study co-author Tommi Koskinen, a member of Cassini’s Ultraviolet Imaging Spectograph team. “They help address the question of why the uppermost part of the atmosphere is so hot, while the rest of the atmosphere—due to the large distance from the Sun—is cold.”

Managed by NASA’s Jet Propulsion Laboratory in Southern California, Cassini was an orbiter that observed Saturn for more than 13 years before exhausting its fuel supply. The mission plunged it into the planet’s atmosphere in September 2017, in part to protect its moon Enceladus, which Cassini discovered might hold conditions suitable for life. But before its plunge, Cassini performed 22 ultra-close orbits of Saturn, a final tour called the Grand Finale.

It was during the Grand Finale that the key data was collected for the new temperature map of Saturn’s atmosphere. For six weeks, Cassini targeted several bright stars in the constellations of Orion and Canis Major as they passed behind Saturn. As the spacecraft observed the stars rise and set behind the giant planet, scientists analyzed how the starlight changed as it passed through the atmosphere.

Measuring how dense the atmosphere is gave scientists the information they needed to find the temperatures. Density decreases with altitude, and the rate of decrease depends on temperature. They found that temperatures peak near the auroras, indicating that auroral electric currents heat the upper atmosphere.

Density and temperature measurements together helped scientists figure out wind speeds. Understanding Saturn’s upper atmosphere, where planet meets space, is key to understanding space weather and its impact on other planets in our solar system and exoplanets around other stars.

Full article here.

Comments
  1. Jim says:

    Interesting. But, density and pressure determine wind speed? No, differential of pressure, of point a and b, indicate flow, not speed, now the flow rate is determined by, distance and time.they are about the same, but not quite. It has no effect of density.it flows unless it’s a brick.

  2. oldbrew says:

    Abstract
    Temperatures of the outer planet thermospheres exceed those predicted by solar heating alone by several hundred degrees.

    https://www.nature.com/articles/s41550-020-1060-0
    – – –
    Trace gases won’t solve that one.

  3. JB says:

    Gee, do ya suppose its the same phenomenon with the sun? The difference being plasma in arc mode over the entire surface of the sun?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s