Research reveals possibly active tectonic system on the Moon

Posted: May 1, 2020 by oldbrew in Geology, moon, Natural Variation, solar system dynamics
Tags: ,

Image credit: naturalnavigator.com


We’re told: ‘They refer to what they’ve found as ANTS, for Active Nearside Tectonic System’, which is ‘a mysterious system of tectonic features (ridges and faults) on the lunar nearside, unrelated to both lava-filled basins and other young faults that crisscross the highlands.’ Tectonic activity on one side only sounds a bit unlikely somehow, but what about tidal disturbance from Earth? We know it works the other way round: the Moon causes tides on Earth. Of course the Moon is tidally locked to Earth, hence the term ‘nearside’.
– – –
Researchers have discovered a system of ridges spread across the nearside of the Moon topped with freshly exposed boulders, reports Phys.org.

The ridges could be evidence of active lunar tectonic processes, the researchers say, possibly the echo of a long-ago impact that nearly tore the Moon apart.

“There’s this assumption that the Moon is long dead, but we keep finding that that’s not the case,” said Peter Schultz, a professor in Brown University’s Department of Earth, Environmental and Planetary Sciences and co-author of the research, which is published in the journal Geology.

“From this paper it appears that the Moon may still be creaking and cracking—potentially in the present day—and we can see the evidence on these ridges.”

Most of the Moon’s surface is covered by regolith, a powdery blanket of ground-up rock created by the constant bombardment of tiny meteorites and other impactors. Areas free of regolith where the Moon’s bedrock is exposed are vanishingly rare.

But Adomas Valantinas, a graduate student at the University of Bern who led the research while a visiting scholar at Brown, used data from NASA’s Lunar Reconnaissance Orbiter (LRO) to spot strange bare spots within and surrounding the lunar maria, the large dark patches on the Moon’s nearside.

“Exposed blocks on the surface have a relatively short lifetime because the regolith buildup is happening constantly,” Schultz said. “So when we see them, there needs to be some explanation for how and why they were exposed in certain locations.”

For the study, Valantinas used the LRO’s Diviner instrument, which measures the temperature of the lunar surface. Just as concrete-covered cities on Earth retain more heat than the countryside, exposed bedrock and blocky surfaces on the Moon stays warmer through the lunar night than regolith-covered surfaces.

Using nighttime observations from Diviner, Valantinas turned up more than 500 patches of exposed bedrock on narrow ridges following a pattern across the lunar nearside maria.

A few ridges topped with exposed bedrock had been seen before, Schultz says. But those ridges were on the edges of ancient lava-filled impact basins and could be explained by continued sagging in response to weight caused by the lava fill.

But this new study discovered that the most active ridges are related to a mysterious system of tectonic features (ridges and faults) on the lunar nearside, unrelated to both lava-filled basins and other young faults that crisscross the highlands.

“The distribution that we found here begs for a different explanation,” Schultz said.

Full article here.

Comments
  1. oldbrew says:

    ‘The ridges could be evidence of active lunar tectonic processes, the researchers say, possibly the echo of a long-ago impact that nearly tore the Moon apart.’

    If in doubt, reach for impact theories. The ‘long-ago’ part answers their speculation IMO.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s