
A year after I wrote the original ‘Why Phi’ post explaining my discovery of the Fibonacci sequence links between solar system orbits and planetary synodic periods here at the Talkshop in 2013, my time and effort got diverted into politics. The majority of ongoing research into this important topic has been furthered by my co-blogger Stuart ‘Oldbrew’ Graham. Over the last eight years he has published many articles here using the ‘Why Phi’ tag looking at various subsystems of planetary and solar interaction periodicities, resonances, and their relationships with well known climatic periodicities such as the De Vries, Hallstatt, Hale and Jose cycles, as well as exoplanetary systems exhibiting the same Fibonacci-resonant arrangements.
Recently, Stuart contacted me with news of a major breakthrough in his investigations. In the space of a few hours spent making his calculator hot, major pieces of the giant jigsaw had all come together and brought ‘the big picture’ into focus. In fact, so much progress has been made that we’re not going to try to put it all into a single post. Instead, we’ll provide an overview here, and follow it up with further articles getting into greater detail.
One of the longest known climatic periods is the ~413,000 year cycle in the eccentricity of Earth’s orbit. This period has been found in various types of core sample data and discussed in many paleoclimatic science papers, along with cyclicities around 95, 112 and 124kyr, and shorter periods such as Earth’s obliquity variation, ~41Kyr and Earth’s equinoctial-precession periods of ~19 and ~23kyr. Stuart has discovered how all of these periods are related to each other and to the planetary orbits and their synodic conjunctions.
We’ve also been able to link these Earth Orientation Parameters and climatic periodicities to the planetary orbital and synodic conjunction periods which we believe are key to modulating solar activity. The basis for these were laid out in my 2011 post on Jupiter and Saturn’s motion and further developed with the valuable input of many Talkshop contributors, culminating in the solar variation models published by Rick Salvador and Ian Wilson in the 2013 special issue of Pattern Recognition in Physics.

Figure 1 below scratches the surface of what we have discovered. These relationships are all precise whole number ratios, not approximations. The red ‘Graham Cycle’ is a novel addition to previously known cyclic periods which connects the three areas of the figure; Solar-Planetary at the top, climatic periods bottom left, and Earth Orientation Parameters bottom right. Of note, are the ratios between the 60kyr Graham Cycle period and the periods in the three groups. They are mostly ratios of Fibonacci numbers or combinations of them. We know from a previous investigation that Fibonacci and phi (Golden Section) related periodicities tend to be stable and minimally resonant. It could be that the reason the 60kyr period hasn’t been found previously is due to it not showing up strongly in periodograms and other spectral analyses. Nonetheless, it’s an important period for our ‘Why Phi’ investigation and has a lot more connections than we wanted to clutter up Figure 1 with, as it already looks pretty busy!

Solar cycles
Starting with the upper ‘Solar planetary’ section of figure 1, Ian Wilson’s 2013 PRP paper noted that the Hale cycle and Jupiter-Saturn synodic (J-S) have a 193 year beat period, which is evident in Oxygen18 isotope data as well as Group Sunspot Numbers and 10Be ice core data. This was picked up by the Helmholtz Institute research lab and covered in our earlier post on the Solar Magnetic cycle. What they didn’t pick up on is the fact that the same 193year beat period can also be derived from the 178.8yr Jose cycle and the 2403yr Solar Inertial Motion (SIM) period.
This second route to the 193 year solar magnetic cycle is a novel result revealed in this post. Using the beat period formula of (A*B)/(A-B) = period, the solar inertial motion cycle (A) proposed by Charvatova of ~2403 tropical years and the Jose cycle (B) produces the same 193 year result. It was then possible to tie all this together in the 60 kyr cycle shown in the diagram.
There are 336 Jose and 25 SIM in 60 kyr which means the beat period produces 336-25 = 311 solar magnetic cycles of 193 years each. The number of Hale cycles in 60 kyr is given by the number of J-S minus the number of solar magnetic cycles. i.e. 3024-311 = 2713. It’s notable that 311 and 2713 are both prime numbers. Coupled with the fact that the number of J-S in 60Kyr is the Fibonacci multiple 144×21, we think this is a strong indicator that both 193yr and 60kyr periods are significant solar-planetary cyclic periods.
Support for the 60kyr period comes from Russia, where in 2017 A. S. Perminov and E. D. Kuznetsov produced a paper at at Ural Federal University, Yekaterinburg, entitled ‘Orbital Evolution of the Sun–Jupiter–Saturn–Uranus–Neptune Four-Planet System on Long-Time Scales’. This paper shows inter-related variations in the orbital parameters of the gas giants including antiphase changes in the eccentricities and orbital inclinations of Jupiter and Saturn at ~60kyr and in-phase changes in those parameters at ~400kyr, antiphase to Uranus. These ~400kyr variations are likely to be drivers of Earth’s 413kyr eccentricity cycle.

Original Russian Text © A.S. Perminov, E.D. Kuznetsov, 2018, published in Astronomicheskii Vestnik, 2018, Vol. 52, No. 3, pp. 239–259.
Planetary-climatic cycles
Moving on to the lower left ‘climatic and planetary cycles’ section of Figure 1,
The de Vries cycle is half of 21 J-S and is a prominent climatic cycle. It also links to other cycles through resonant harmonics: Hallstatt = 11 de Vries, J-S synodic precession cycle = 12 de Vries. 6 de Vries is 7 Jose cycles. 33 de Vries is 7 Eddy cycles. See also Why Phi? – Jupiter, Saturn and the de Vries cycle.
The lunar-terrestrial year (L-T) is 13 lunar months. Earth’s tropical year is used throughout this post. Whole numbers of both occur at 353 tropical years and 363 lunar years, forming 10 beats (363-353) of 35.3 years. An important period is 13 L-T, which is 2 Hallstatts and 11 de Vries cycle pairs (22 de Vries). This is 1/9th of the obliquity cycle. It is also 3x7x11 J-S. It follows that the 41kyr obliquity cycle is 3x7x11 Jose cycles, because the Jose cycle is 9 J-S. 3,7 and 11 are all Lucas numbers. We will post a separate article on the inter-relation of the Fibonacci and Lucas series, as they relate to orbital resonance. See also Sidorenkov and the lunar or tidal year (2016)
An explanation for the effect of the motion of the gas giants on these and other climatic periods is found in Nicola Scafetta’s 2020 paper ‘Solar Oscillations and the Orbital Invariant Inequalities of the Solar System’ discussed here at the talkshop.
EOP
At the lower right of Figure 1 we find Earth orientation parameters and associated cycles. To understand how these link to planetary periods we need to look at the motions of Jupiter and Saturn in particular. Kepler gives us this useful graphic in his book De Stella Nova (1606).

From an earlier post: ‘As successive great conjunctions occur nearly 120° apart, their appearances form a triangular pattern. In a series every fourth conjunction returns after some 59.8 years to the vicinity of the first. These returns are observed to be shifted by some 7–8°’. Wikipedia. [2019 version]. After 3 J-S the conjunctions have nearly described an exact triangle, but the start position has moved (precessed) slightly, by 60/7 degrees of precession of the J-S conjunction axis. It takes 42 of those (42*3 J-S) to complete the precession cycle in 2503 years. (41×61.051 y = 41×360 degrees movement of the axis).
The 413kyr eccentricity cycle is equivalent to 55*3 of these J-S synodic precession periods, and 6765 or 55×123 (Fibonacci and Lucas numbers) of the 61.051 360 degree periods. Additionally 413 kyr = 10 obliquity periods.
In the brown triangle: the 19 kyr and 23 kyr periods have a beat period of the 112kyr perihelion precession.
23 kyr is 10 Hallstatt cycles.
In the blue triangle: the 95 kyr (5×19 kyr) and 124 kyr (3 obliquities) have a beat period of 413 kyr i.e. Earth’s eccentricity cycle (mentioned in various research papers). Since our 95 kyr = 353×270 and our 124 kyr = 353×351, we find: (351×270) / (351-270) = 1170, and 1170*353 = 413010 years (the obliquity period).
Discussion
The 95 and 124kyr eccentricity cycles are linked with glacial periods. From Park and Maarsch (1993) paper ‘Plio—Pleistocene time evolution of the 100-kyr cycle in marine paleoclimate records’: “The DSDP 607 time scale is more favorable to an abrupt jump in amplitude for the 95-kyr δ18O envelope, but not in the 124-kyr envelope. Rather, long-period δ18O fluctuations appear phase-locked with the 124-kyr eccentricity cycle some 300-400 kyr prior to its growth in amplitude and phase-lock with the 95-kyr eccentricity cycle in the late Pleistocene.” Because the 124kyr period is 3x41kyr (obliquity period), this may help explain the change from glacial periods around 41kyr to around 100kyr.
The bi-modality of glacial cycles and the 95 and 124kyr cycles is one of the modes of variation mirrored between celestial cyclic motion and Earth climatic events. There are also many periods which are ‘quasi-cyclic’ and vary in length within bounds whose attractor nodes fit our phi-Fibonacci scheme. We are not claiming to have elucidated a deterministic and predictable system with our precise whole-number orbitally resonant ratios. We are offering this scheme as a potentially useful roadmap for further investigations into the intriguing numerical links between planetary orbits, synodic timings, planar inclinations, eccentricities, energy transfers and other celestial mechanical and orientation data.
As an example of how our scheme links shorter to longer term cycles, there are exactly 9 Jupiter Saturn conjunctions in the period of the Jose cycle of 178.8 years. There are 55x21x2 Jose cycles in the 413kyr eccentricity period. Experienced researchers like Paul Vaughan will immediately see that this product of multiple Fibonacci numbers resolves to the product of the first 6 prime numbers 1,2,3,5,7,11.
The solar system is organised by the forces of gravity and electro-magnetism into a log-normal distribution of which the Fibonacci series and Lucas series are examples which maintain the stability of the system. Resonance is minimised, but also utilised to transfer energy between orbits in order to resolve inequalities through resonance-forced changes to the eccentricity and inclination of orbits. These changes give rise to the cyclic changes in climatic factors on Earth observed at all timescales from the ~22yr Hale and ~60yr J-S trigon to the ~100kyr and 413kyr glaciation in core sample data and other indices.
Data sources and acknowledgements
Planetary data used is from NASA JPL which gives the Seidelmann values for orbital periods. Our thanks to Paul Vaughan for insisting on their use.
The periods we have calculated can all be reproduced using the ratios we have provided on Figure 1 and the NASA JPL values for the Jupiter, Saturn and Uranus orbital periods.
2317.99883398204 = 80*(√28+√163+√43+√19) ~= 2318
4635.99766796409 = 160*(√28+√163+√43+√19) ~= 2318 * 2
2384035.65182465 = beat(4635.99766796409,4627)
2384110.34604552 = beat(74626.0277273697,72361.0252351259) = 360*60*60 / 0.543599
La2011 Table 5
moderators: calculations caught in filter
_
easy hindsight:
https://tallbloke.wordpress.com/2013/01/09/tim-cullen-solar-system-holocene-lawler-events/
algebraic review
4270.51884168654 = 2/(1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
49962.9015304794 = 1/(2/11.8627021700857-2/29.4701958106261-2/11.8619993833167+2/29.4571726091513)
4669.65169718707 = 2/(-3/11.8627021700857+1/29.4701958106261+1/84.0331316671926+1/164.793624044745+4/11.8619993833167-4/29.4571726091513)
simple alternate perspective
anomalistic
19.8549641949401 = 1/(1/11.8627021700857-1/29.4701958106261)
13.8125825263028 = 1/(1/11.8627021700857-1/84.0331316671926)
12.7828803855253 = 1/(1/11.8627021700857-1/164.793624044745)
9.95061383963391 = 2/(3/11.8627021700857-1/29.4701958106261-1/84.0331316671926-1/164.793624044745)
synodic
9.92945505108639 = 2/(+4/11.8619993833167-4/29.4571726091513)
4669.65169718707 = 2/(-3/11.8627021700857+1/29.4701958106261+1/84.0331316671926+1/164.793624044745+4/11.8619993833167-4/29.4571726091513)
link to net search result for perihelion 4670
_
moderators: other calculations caught in filter
4670 years
This is a test comment.
3 comments have vanished. Cause unknown
headin’ up the mountain now.
[mod] nothing in the WP spam filter now
Mayan 36750
15009.1608487337 = 5482096 / 365.25
36135.2404360745 = beat(25672.5169367299,15009.1608487337)
anomalistic
171.471519050756 = beat(164.793624044745,84.0331316671926) — Standish
tropical
171.444289533663 = beat(163.7232045,83.74740682) — Seidelmann
171.444286952825 = beat(163.723203285421,83.7474058863792) — ‘factsheet’
1079630.33859387 = beat(171.471519050756,171.444289533663) ; * 2 = 2159260.67718775
1079528.00372651 = beat(171.471519050756,171.444286952825) ; * 2 = 2159056.00745301
36750.2561948093 = beat(2159260.67718775,36135.2404360745)
36750.3154881725 = beat(2159056.00745301,36135.2404360745)
compare
Berger 1988 Table 4 (based on Berger 1978)
2166101.14285714 = beat(75259,72732)
36748.2810485504 = beat(2166101.14285714,36135.2404360745)
supplementary
lunisolar with general precession
13374613.0030966 = beat(25771.4533429313,25721.8900031954)
25672.5169367299 = axial(13374613.0030966,25721.8900031954)
no mystery left here
36135.2438440821 = axial(2159056.00745389,36750.3190131859)
15009.1614366987 = axial(36135.2438440821,25672.5169367299) = 5482096.21475421 / 365.25
bias hindsight “120k orbital solutions” tunes with round-off a typo f(UN)code’n’PRrhymesnot:
30031.0042303539 = beat(36750.3190131859,16526.3120307908)
15009.1624987455 = axial(36135.25,25672.5169367299) = 5482096.6026668 / 365.25
weather influence campaign or entertainment: unknown
Seidelmann short-model sidereal UJS bias clarification
30031 = 59*509 (lowest primorial+1 that’s not prime)
33052.4924754047 = harmean(36750,30031) ~= 33052.5
36750.0186045651 = beat(30031,16526.25)
36750.0196670027 — La(2004a,2010a)average
systematic bias review
19.8650360864628 = beat(29.4474984673838,11.8626151546089)
16.9122914926352 = harmean(29.4474984673838,11.8626151546089)
21.1746788367349 = beat(84.016845922161,16.9122914926352)
321.183589283115 = slip(21.1746788367349,19.8650360864628)
1908.55545325512 = slip(321.183589283115,19.8650360864628)
33052.6240615815 = slip(1908.55545325512,321.183589283115)
compare
15009.1608487337 = 5482096 / 365.25
36135.2404360745 = beat(25672.5169367299,15009.1608487337)
36750.3154881723 = beat(2159056.00745389,36135.2404360745)
33052.6200736723 = harmean(36750.3154881723,30031)
again: the bias in the short-duration models is systematic
it could easily be corrected by experts before publication
it isn’t
why?
unknown
supplementary
30031 = 13*11*7*5*3*2 + 1 = 13# + 1 = 59 * 509
36750.3253483715 = beat( 30031 , 33052.6240615815 / 2)
36135.2499689834 = axial(2159056.00745389,36750.3253483715) ~= 36135.25
15009.1624933944 = axial(36135.2499689834,25672.5169367299) = 5482096.6007123 / 365.25
recall:
33053√Φ/8 ~= 5256; 5256√Φ/8 ~= 836
typo: “/√Φ” not “√Φ”
serpent no. anomalistic UN guidance
Lunisolar Bias
general & lunisolar precession
25746.6478202264 = harmean(25771.4533429313,25721.8900031954)
NASA ‘factsheet’ tropical
11.8619854620833 = beat(25746.6478202264,11.8565229295003)
29.4571820908507 = beat(25746.6478202264,29.4235181382615)
19.858866774147 = beat(29.4571820908507,11.8619854620833)
60.9467636123559 = slip(29.4571820908507,11.8619854620833)
883.349939238609 = slip(60.9467636123559,19.858866774147) ; / 2 = 441.674969619304
600.349139225674 = harmean(936.955612197409,441.674969619304) ; * 4 = 2401.3965569027
835.54616509501 = beat(936.955612197409,441.674969619304)
biased (short-duration) Seidelmann sidereal model:
19.8650360864628 = beat(29.4474984673838,11.8626151546089)
61.0464822565173 = slip(29.4474984673838,11.8626151546089)
835.546575435631 = slip(61.0464822565173,19.8650360864628)
2401.00140862743 = harmean(2401.3965569027,2400.60639037357)
2401.00140862743 = 7.00000102669615 ^ 4
supplementary anomalistic (Standish 1992 Table 2a) review
936.955612197409 = 1/(-2/11.8627021700857+5/29.4701958106261)
4270.51884168654 = 2/(1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
1536.74746987137 = harmean(4270.51884168654,936.955612197409)
2400.60639037357 = beat(1536.74746987137,936.955612197409)
Why aren’t the biased models unbiased before publication?
Unknown.
25770.0359146014 = 360*60*60/50.290966 — widely cited general precession rate
25722.1631216381 = 360*60*60/50.38456501 — W94 lunisolar precession
25746.0772642216 = harmean(25770.0359146014,25722.1631216381)
13846300.2974074 = beat(25770.0359146014,25722.1631216381)
25674.4678646892 = axial(13846300.2974074,25722.1631216381)
36131.3759941719 = beat(25674.4678646892,15009.1608487337) — spicy whether
15009.1608487337 = 5482096 / 365.25
11.8619855831937 = beat(25746.0772642216,11.8565229295003)
29.4571828377274 = beat(25746.0772642216,29.4235181382615)
19.858866774147 = beat(29.4571828377274,11.8619855831937)
60.9467604151707 = slip(29.4571828377274,11.8619855831937)
883.351954142505 = slip(60.9467604151707,19.858866774147)
835.54977055391 = beat(936.955612197409,441.675977071252)
36130.8944646852 = beat(29.447498973306,29.4235181382615) — Sidorenkov
36131.2752839187 = harmean(36131.65611118,36130.8944646852) —- or
36131.65611118 = beat(29.4474984673838,29.4235181382615) — Seidelmann
29.447499867163 = beat(36131.3759941719,29.42351935)
11.862615400484 = 2 * beat( 835.54977055391 , 29.447499867163 / 5 )
blur 64k mixmmod11sample
23093.6961437637 = beat(11.862615400484,11.85652502)
63999.6554631887 = beat(36131.3759941719,23093.6961437637) ~= 64k
un weather seidelenkov or sidormann
11.8626149080812 = 2 * beat( 835.54977055391 , 29.4474986534485 / 5 )
29.4474986534485 = beat(36131.3759941719,29.4235181382615)
Bound 2401 = 7^4 with surely enough error = 0.000014667% J-aims.
2362 notes
comparing systematically biased models
(which can be systematically unbiased)
Seidelmann (1992) & Sidorenkov (2017) share superficial similarity
however, lots of detail differences are noteworthy
here’s one to start with
Seidelmann (1992) sidereal review
=
Jovian V-E 5256 Ratio Summary
J:U:S:N = 1:2:16:31
J: 1 = ⌊0.999878363433384⌉ = ⌊5256 / 5256.6393995685⌉
S: 16 = ⌊16.0035845857963⌉ = ⌊5256 / 328.426420457382⌉
U: 2 = ⌊1.99911615294986⌉ = ⌊5256 / 2629.16188848974⌉
N: 31 = ⌊31.0045597971227⌉ = ⌊5256 / 169.52345185329⌉
J: 5256.6393995685 = 1 * 5256.6393995685
S: 5254.8227273181 = 16 * 328.426420457382
U: 5258.32377697949 = 2 * 2629.16188848974
N: 5255.227007452 = 31 * 169.52345185329
=
Sidorenkov analogs:
5256 / x =
1.11245625125401
16.039288833368
1.98119882107214
31.0141327829003
4724.68017872629 = 1 * 4724.68017872629 — carefully take note of something about this one
5243.12523289982 = 16 * 327.695327056239
5305.87838443763 = 2 * 2652.93919221881
5253.60490137049 = 31 * 169.471125850661
even more perfect jupiter-saturn framing — part i
19.8650352019356 = beat(29.447498973306,11.8626149212868)
9.9325176009678 = 19.8650352019356 / 2
4.9662588004839 = 19.8650352019356 / 4
16.9122913389518 = harmean(29.447498973306,11.8626149212868)
8.4561456694759 = axial(29.447498973306,11.8626149212868)
4.22807283473795 = 8.4561456694759 / 2
2.11403641736897 = 8.4561456694759 / 4
6.56961469713012 = axial(14.723749486653,11.8626149212868)
10.7425999661684 = beat(16.9122913389518,6.56961469713012)
5.3712999830842 = 10.7425999661684 / 2
2.6856499915421 = 10.7425999661684 / 4
4.73161069513687 = axial(16.9122913389518,6.56961469713012)
2.36580534756843 = 4.73161069513687 / 2
1.18290267378422 = 4.73161069513687 / 4
131.716314078385 = slip(19.8650352019356,10.7425999661684)
65.8581570391927 = slip(19.8650352019356,5.3712999830842)
50.0715810605726 = slip(19.8650352019356,2.6856499915421)
100.143162121145 = slip(19.8650352019356,4.73161069513687)
50.0715810605727 = slip(19.8650352019356,2.36580534756843)
96.1826326350372 = slip(19.8650352019356,1.18290267378422)
supplementary
61.0464717290582 = slip(29.447498973306,11.8626149212868)
835.550927105133 = slip(61.0464717290582,19.8650352019356)
even more perfect jupiter-saturn framing — part ii
basic
2432.00637869116 = slip(100.143162121145,19.8650352019356)
1216.00318934558 = slip(100.143162121145,9.9325176009678)
1216.00318934592 = slip(50.0715810605726,9.9325176009678)
608.00159467279 = slip(100.143162121145,4.9662588004839)
608.00159467296 = slip(50.0715810605726,4.9662588004839)
608.001594672738 = slip(96.1826326350372,19.8650352019356)
304.000797336369 = slip(96.1826326350372,9.9325176009678)
compound
1216.00318934576 = slip(356.529955086161,131.716314078385)
1216.00318934575 = slip(208.887731776281,65.8581570391927)
1216.00318934571 = slip(208.887731776281,50.0715810605726)
1216.00318934591 = slip(104.44386588814,50.0715810605726)
608.00159467288 = slip(178.26497754308,65.8581570391927)
1216.00318934554 = slip(104.443865888141,50.0715810605726)
–
a little more wholesome than “perfect jupiter-saturn framing”
2432.00637869017 = 2/(27/11.8626149212868-67/29.447498973306)
608.001594672542 = 1/(54/11.8626149212868-134/29.447498973306)
19.0000498335169 = 1/(1728/11.8626149212868-4288/29.447498973306)
19 ~= 1/(1728/j-4288/s)
431 ~= 1/(-89/j+221/s)
431.004429758615 = 1/(-89/11.8626149212868+221/29.447498973306)
862.008859517229 = 2/(-89/11.8626149212868+221/29.447498973306)
basic
862.008859517104 = slip(131.716314078385,4.22807283473795)
431.004429758552 = slip(131.716314078385,2.11403641736897)
431.004429758552 = slip(65.8581570391927,2.11403641736897)
compound
862.008859517073 = slip(356.529955086161,65.8581570391927)
862.008859517088 = slip(310.94560772299,131.716314078385)
862.008859517088 = slip(155.472803861495,131.716314078385)
431.004429758544 = slip(155.472803861495,65.8581570391927)
Theorrery Skeptic
Doubtful weather there’s a trustworthy political party (or orrery).
JEV ingredients (Bollinger 1952 method)
1.59868960469858 = beat(1.00001741273101,0.615197262149213)
0.799344802349289 = 1.59868960469858 / 2
0.399672401174645 = 1.59868960469858 / 4
0.761766202327597 = harmean(1.00001741273101,0.615197262149213)
0.380883101163799 = axial(1.00001741273101,0.615197262149213)
0.190441550581899 = 0.380883101163799 / 2
0.0952207752909496 = 0.380883101163799 / 4
0.814040380789063 = beat(11.8626149212868,0.761766202327597)
0.407020190394532 = 0.814040380789063 / 2
0.203510095197266 = 0.814040380789063 / 4
0.715800563194352 = axial(11.8626149212868,0.761766202327597)
0.357900281597176 = 0.715800563194352 / 2
0.178950140798588 = 0.715800563194352 / 4
44.2785528962259 = slip(1.59868960469858,0.814040380789063)
22.1392764481129 = slip(1.59868960469858,0.407020190394532)
11.0696382240565 = slip(1.59868960469858,0.203510095197266)
6.84872428662588 = slip(1.59868960469858,0.715800563194352)
3.42436214331294 = slip(1.59868960469858,0.357900281597176)
24.1185188101801 = slip(1.59868960469858,0.178950140798588)
thus:
350.939503542819 = slip(22.1392764481129,0.761766202327597)
207.994354394449 = slip(44.2785528962259,0.399672401174645)
207.994354394443 = slip(73.0136987128728,44.2785528962259)
146.027397425746 = slip(44.2785528962259,1.59868960469858)
73.0136987128728 = slip(22.1392764481129,0.799344802349289)
89.3948929753992 = slip(44.2785528962259,0.190441550581899)
88.5571057924501 = harmean(89.3948929753992,87.7348758857048) ; 44.2785528962251 = axial
87.7348758857048 = slip(22.1392764481129,0.190441550581899)
4724.68017871817 = beat(89.3948929753992,87.7348758857048)
4724.68017872629 = slip(44.2785528962259,0.0952207752909496)
4724.68017870897 = slip(350.939503542819,44.2785528962259)
4724.68017872737 = slip(89.3948929753992,44.2785528962259)
4724.68017870897 = slip(87.7348758857048,44.2785528962259)
2362.34008935448 = slip(350.939503542819,22.1392764481129) ——— 700,44
2362.34008936368 = slip(89.3948929753992,22.1392764481129) ——— notice
2362.34008935448 = slip(87.7348758857048,22.1392764481129) ——— anything
1181.17004467724 = slip(350.939503542819,11.0696382240565)
1181.17004468184 = slip(89.3948929753992,11.0696382240565)
1181.17004467724 = slip(87.7348758857048,11.0696382240565)
980.292586153988 = slip(292.054794851491,88.5571057924518) ; 292 = 163+67+43+19
490.146293076994 = slip(146.027397425746,44.2785528962259)
245.073146538497 = slip(73.0136987128728,22.1392764481129)
with NASA Horizons 1929.72222222222 sidereal
JSUN orbital invariant (long-run wide-guassian central limit)
2320.40158057186 = axial(130705.116382548,2362.3400894)
compare (Horizons 1929.72222222222 JSUN orbital invariants only — without Sidorenkov JEV)
2320.22208286955 = axial(130705.116382548,2362.15404490606)
notin’ a few interresstin’ properties not shared by Seidelmann & Sidorenkov
˚Knot f(eel)in’PRsure’22DC(44)ide weather appearance orrery’a11 IT
/a typo h/tM11
130704.452624679 = beat(173901.37537739,74619.9907876555)
73: lowest prime congruent to 1 mod 24
73 = average(19,43,67,163) ; 19 = x mod 24 for x = 19, 43, 67, 163
5256 = 7920 – 2400 – 240 – 24
Perfect Contrusst?
Simple Reason: Center Unknown
Here’s the backstory on how the lunisolar bias stood out distinctly.
One – and only one – of the many parameter lists fits the criterion.
“[…] the largest known number not of the form a^2+s with s a semiprime”
883.339228237648 = harmean( 936.716909730743 , 835.716909730743 )
883.339228237648 = harmean ( 101 + C√φ , C√φ ) = 2 / ( 1/(101+C√φ) + 1/(C√φ) )
101: lowest odd prime Mertens zero-crossing
_____________
supplementary
1/(
5/beat( harmean(general,lunisolar precession) , Saturn tropical) –
2/beat( harmean(general,lunisolar precession) , Jupiter tropical)
)
low
Seidelmann (1992) tropical
883.332192747065 — LLR
883.334207569974
~Center:
883.342073334256 = grand harmonic mean
high
NASA ‘factsheet’ tropical
883.349939238609 — LLR
883.351954142505
Diversifying Bidecadal Chandler Resonance Diagnostics
Seidelmann (1992) short-duration (biased) sidereal
6.46811773461345 = beat(1.18290267954072,1.00001743371442)
Standish (1992) nodal
19.8630730877524 = beat(29.4511026866654,11.862499899747)
bias diagnostics
280.076577904465 = slip(19.8630730877524,6.46811773461345)
2790.5838772567 = slip(280.076577904465,19.8630730877524)
Standish (1992) anomalistic orbital invariant (0=-2+5+3-6)
2790.83682251396 = 1/(-2/11.8627021700857+5/29.4701958106261+3/84.0331316671926-6/164.793624044745)
reverse-engineering sidereal earth estimate from jovian anomalistic:
1.00001743139444 = 14/(2/11.8627021700857-5/29.4701958106261-3/84.0331316671926+6/164.793624044745+84/11.8626151546089+140/29.4474984673838+43/11.862499899747-43/29.4511026866654)
Experts failed us severely more than a decade ago.
They harassed us viciously and relentlessly without ever volunteering the most important information.
Why? Unknown.
compare – using Standish (1992) short-duration (biased) sidereal earth
6.46811767349981 = beat(1.18290267954072,1.0000174322536)
280.076463317364 = slip(19.8630730877524,6.46811767349981)
2790.74314407649 = slip(280.076463317364,19.8630730877524)
Anomalistic QBO Halstatt
19.8549641949401 = beat(29.4701958106261,11.8627021700857) —– Standish (1992) anomalistic
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
8.45806059760692 = axial(29.4701958106261,11.8627021700857)
6.57189983390616 = axial(14.735097905313,11.8627021700857)
9.46619163320184 = harmean(16.9161211952138,6.57189983390616)
4.73309581660092 = axial(16.9161211952138,6.57189983390616)
2.36654790830046 = 4.73309581660092 / 2
1.18327395415023 = 4.73309581660092 / 4
203.72293652095 = slip(19.8549641949401,9.46619163320184)
50.9307341302375 = slip(19.8549641949401,2.36654790830046) ——————–
4724.17556802657 = slip(203.72293652095,16.9161211952138)
2362.08778401328 = slip(203.72293652095,8.45806059760692)
4724.17556802739 = slip(50.9307341302375,16.9161211952138)
2362.0877840137 = slip(50.9307341302375,8.45806059760692) ——————– 2362
_
2320.15794438421 = axial(130704.452624679,2362.0877840137)
2320.15815353613 = axial(130705.116382548,2362.0877840137)
anomalistic JEV intro
0.761769224080824 = harmean(1.0000262476142,0.615197860179071)
0.715803548953639 = axial(11.8627021700857,0.761769224080824)
6.84967828238651 = slip(1.59867106414771,0.715803548953639)
835.563824740778 = slip(6.84967828238651,0.761769224080824)
1.59867106414771 = beat(1.0000262476142,0.615197860179071)
24.0670906604158 = slip(6.84967828238651,1.59867106414771)
24.067904774739 = ⌊(e^√7π)^(1/p)⌉^p – e^√7π for p=2,3,4,6,12
Anomalistic “4670 years”
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
111.307357343015 = harmean(164.793624044745,84.0331316671926)
19.9477072615632 = beat(111.307357343015,16.9161211952138) ; / 2 = 9.97385363078158
4270.51884168622 = slip(19.9477072615632,19.8549641949401)
8.45806059760692 = axial(29.4701958106261,11.8627021700857)
55.6536786715076 = axial(164.793624044745,84.0331316671926)
9.97385363078158 = beat(55.6536786715076,8.45806059760692)
2135.25942084311 = slip(19.8549641949401,9.97385363078158)
4670.79911370059 = slip(2135.25942084311,19.8549641949401)
invariant 0=1-3+1+1
2135.25942084327 = 1/(1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
What’s in anomalistic “mode 11”? by US Diss Cover:
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
19.8549641949401 = beat(29.4701958106261,11.8627021700857) ; / 2 = 9.92748209747005
60.8544553085225 = slip(29.4701958106261,11.8627021700857)
thus base what follows with Standish (1992) anomalistic
_
compare & contrast
—-
1.
Seidelmann (1992) short-duration sidereal
11.8626151546089
29.4474984673838
84.016845922161
164.791315640078
29.3625733662893 = harmonic mean
19.8060547427555 = axial(60.8544553085225,29.3625733662892)
66.1523612443866 = slip(28.3699051701599,19.8549641949401)
8040.33760745923 = slip(19.8549641949401,19.8060547427555)
172978.748617708 = slip(8040.33760745923,19.8549641949401) —– further notes be low
86489.3743088542 = slip(8040.33760745923,9.92748209747005)
56.7398103403199 = beat(60.8544553085225,29.3625733662892) ; / 2 = 28.3699051701599
1182607.44767058 = slip(172978.748617708,66.1523612443866) ; * 2 = 2365214.89534115
202615.037187354 = slip(86489.3743088542,66.1523612443866) ; * 2 = 405230.074374708
—-
2.
Sidorenkov (2017)
11.8626149212868
29.447498973306
84.0168377823409
164.791321013005
29.3625729287642 = harmonic mean
analogUS (to 1. above) calculations rightly left as an exercise in undersstandin’ 4 those curryUS’n’willin’ (who’ll thus ‘no. who’ tune$ what – CO[$] ITsnot what y/n0boughtWHOyen owe…)
—-
supplementary
2364963.50364963 = beat(74619.9907876555,72337.575351641)
1182481.75182481 = beat(73001.7461837436,68756.9632341238)
405629.613215262 = beat(304406.35241565,173901.37537739)
172826.54615749 = beat(68756.9632341238,49188.0779029847)
173901.37537739 = 1 / g_2
—
in agree mint with us?
Weather 5256 & 4724 are (no. doubt?) in agree mean T.
JPLat0˚Know? Anomalistic weather variant. Mnemonic in-put taxicab:
Seidelmann (1992) tropical
4.72860952101702 = 2/(3/11.85652502+5/29.42351935) = 1727.12462755147 d ~= 1727
2.36430476050851 = 1/(3/11.85652502+5/29.42351935) = 863.562313775734 d
1.18215238025426 = 1/(6/11.85652502+10/29.42351935) = 431.781156887867 d
0.591076190127128 = 1/(12/11.85652502+20/29.42351935) = 215.890578443933 d
“Euler started to use the letter e for the constant in 1727 or 1728 […]”
Sidorenkov (2017)
4.73161069513687 = 2/(3/11.8626149212868+5/29.447498973306) = 1728.22080639874 d
2.36580534756843 = 1/(3/11.8626149212868+5/29.447498973306) = 864.110403199371 d
1.18290267378422 = 1/(6/11.8626149212868+10/29.447498973306) = 432.055201599685 d
0.591451336892109 = 1/(12/11.8626149212868+20/29.447498973306) = 216.027600799843 d
Seidelmann (1992) sidereal short-duration model
4.73161071816289 = 2/(3/11.8626151546089+5/29.4474984673838) = 1728.220814809 d
2.36580535908144 = 1/(3/11.8626151546089+5/29.4474984673838) = 864.110407404498 d
1.18290267954072 = 1/(6/11.8626151546089+10/29.4474984673838) = 432.055203702249 d
0.591451339770361 = 1/(12/11.8626151546089+20/29.4474984673838) = 216.027601851124 d
Seidelmann (1992) synodic
4.73208801967701 = 2/(3/11.8619993833167+5/29.4571726091513) = 1728.39514918703 d
2.36604400983851 = 1/(3/11.8619993833167+5/29.4571726091513) = 864.197574593514 d
1.18302200491925 = 1/(6/11.8619993833167+10/29.4571726091513) = 432.098787296757 d
0.591511002459627 = 1/(12/11.8619993833167+20/29.4571726091513) = 216.049393648379 d
Horizons 1929.72222222222 sidereal (wide-Guassian sample-center)
4.73208337117502 = 2/(3/11.8619848807702+5/29.4571542179636) = 1728.39345132168 d
2.36604168558751 = 1/(3/11.8619848807702+5/29.4571542179636) = 864.196725660838 d
1.18302084279375 = 1/(6/11.8619848807702+10/29.4571542179636) = 432.098362830419 d
0.591510421396877 = 1/(12/11.8619848807702+20/29.4571542179636) = 216.049181415209 d
Standish (1992) nodal
4.73181582715489 = 2/(3/11.862499899747+5/29.4511026866654) = 1728.29573086832 d
2.36590791357745 = 1/(3/11.862499899747+5/29.4511026866654) = 864.147865434162 d
1.18295395678872 = 1/(6/11.862499899747+10/29.4511026866654) = 432.073932717081 d
0.591476978394361 = 1/(12/11.862499899747+20/29.4511026866654) = 216.03696635854 d
Standish (1992) anomalistic
4.73309581660092 = 2/(3/11.8627021700857+5/29.4701958106261) = 1728.76324701349 d ~= 1729
2.36654790830046 = 1/(3/11.8627021700857+5/29.4701958106261) = 864.381623506743 d
1.18327395415023 = 1/(6/11.8627021700857+10/29.4701958106261) = 432.190811753372 d
0.591636977075115 = 1/(12/11.8627021700857+20/29.4701958106261) = 216.095405876686 d
Solves Longstanding Curiosity
This is highly technical but precise.
26256.8112288057 = slip(8040.33760745923,16.9161211952138)
306006.586378586 = slip(26256.8112288057,66.1523612443866)
The original curiosity? Systematically be low.
397906.462823915 = beat(306006.586378586,172978.748617708) ; / 4 =
99476.6157059787
99476.8155050052 = beat(16.9161211952138,16.9132450828034)
16.9132450828034 = harmean(29.4571309198874,11.861990807677) —- Standish (1992) sidereal
(further) clarifies lunisolar bias; well-paid technicians “No!” managers can unbias (hierarchically nested) models for clean, simple public presentation
_
supplementary
398.773134809729 = slip(56.7398103403199,19.8549641949401)
935.113131399583 = slip(398.773134809729,16.9161211952138)
936.033465118244 = harmean(936.955612197393,935.113131399583) ~= 936.0
for future reference
2365.09305036237 = slip(398.773134809729,9.92748209747005)
4730.18610072473 = slip(398.773134809729,19.8549641949401)
Adjust Sidorenkov (2017) earth sidereal year estimate (which looks like a long-duration estimate) to 1.00001743390371 = (1-(1/240)^1)^(0/1)/(1-(1/240)^2)^(2/2)/(1-(1/240)^3)^(3/3)/(1-(1/240)^4)^(2/4)/(1-(1/240)^5)^(5/5)/(1-(1/240)^6)^(1/6) to match SUNEV 5256 (but not JEV 5256) more closely than Seidelmann (1992).
At this point a very large volume of calculations needs to be presented to crystallize the lunisolar bias in detail. Presently this isn’t feasible.
To complete the transformation:
11.862615918328 = 2/(1/((φ^22+1/11)^(e/11+1/22))+5/((1-(1/240)^1)^(0/1)/(1-(1/240)^2)^(2/2)/(1-(1/240)^3)^(3/3)/(1-(1/240)^4)^(2/4)/(1-(1/240)^5)^(5/5)/(1-(1/240)^6)^(1/6))-3/0.615197262149213)
0.761766208470514 = harmean(1.00001743390371,0.615197262149213)
0.814040383108898 = beat(11.862615918328,0.761766208470514)
1.59868955058708 = beat(1.00001743390371,0.615197262149213)
44.2784630136991 = slip(1.59868955058708,0.814040383108898)
351.268593378986 = slip(44.2784630136991,0.761766208470514)
5256.18499467858 = slip(351.268593378986,44.2784630136991)
alternately:
0.380883104235257 = axial(1.00001743390371,0.615197262149213) ; / 4 = 0.0952207760588143
5256.18499465625 = slip(44.2784630136991,0.0952207760588143)
100ka note
19.8549641949401 = beat(29.4701958106261,11.8627021700857) —- Standish (1992) anomalistic
19.8589101021728 = beat(29.4571726091513,11.8619993833167) —– Seidelmann (1992) synodic
99925.8030607636 = beat(19.8589101021728,19.8549641949401)
99972.391587704 = harmean(100019.023576957,99925.8030607636) ———— v ————–
100019.023576957 = beat(16.9161211952138,16.9132606717144)
16.9132606717144 = harmean(29.4571726091513,11.8619993833167) —- Seidelmann (1992) synodic
16.9161211952138 = harmean(29.4701958106261,11.8627021700857) — Standish (1992) anomalistic
8.45806059760692 = axial(29.4701958106261,11.8627021700857) —– Standish (1992) anomalistic
_
55.6536786715076 = axial(164.793624044745,84.0331316671926) —– Standish (1992) anomalistic
111.307357343015 = harmean(164.793624044745,84.0331316671926) — Standish (1992) anomalistic
171.471519050756 = beat(164.793624044745,84.0331316671926)
19.9477072615632 = beat(111.307357343015,16.9161211952138) —– Bollinger (1952) method
9.97385363078158 = beat(55.6536786715076,8.45806059760692)
4270.51884168622 = slip(19.9477072615632,19.8549641949401) —- orbital invariant
2135.25942084311 = slip(19.8549641949401,9.97385363078158) —- orbital invariant
49831.9228185121 = slip(4270.51884168622,19.8549641949401)
4670.79911370059 = slip(2135.25942084311,19.8549641949401) —- “4670 years” (review)
45051.2652209889 = slip(4270.51884168622,8.45806059760692)
99973.0172242633 = slip(45051.2652209889,4270.51884168622) —————- ^ ————-
Selected Algebra
Seidelmann (1992) synodic:
11.8619993833167, 29.4571726091513
Standish (1992) anomalistic:
11.8627021700857, 29.4701958106261, 84.0331316671926, 164.793624044745
_
“4670 years”
4669.65169718707 = 2/(-3/11.8627021700857+1/29.4701958106261+1/84.0331316671926+1/164.793624044745+4/11.8619993833167-4/29.4571726091513)
4670.79911381622 = 1/(107/11.8627021700857-323/29.4701958106261+108/84.0331316671926+108/164.793624044745)
_
“100 kiloyears”
99972.3915878471 = 4/(1/11.8627021700857-3/29.4701958106261-1/11.8619993833167+3/29.4571726091513)
99973.0183503139 = 1/(2766/11.8627021700857-8342/29.4701958106261+2777/84.0331316671926+2777/164.793624044745)
_
“41 kiloyears”
derivation
8.45806059760692 = axial(29.4701958106261,11.8627021700857) ; / 4 =
2.11451514940173
45051.2652209889 = slip(4270.51884168622,8.45806059760692) ; / 4 =
11262.8163052472 = slip(4270.51884168622,2.11451514940173)
41002.979235297 = slip(11262.8163052472,2135.25942084311)
summary:
41002.9789528914 = 1/(-5029/11.8627021700857+15167/29.4701958106261-5049/84.0331316671926-5049/164.793624044745)
_
4724 years &
2362 years
derivations
14.6844304038441 = axial(111.307357343015,16.9161211952138) ; / 4 =
3.67110760096102
48.6117359109827 = slip(19.8549641949401,3.67110760096102)
384.86912152873 = slip(48.6117359109827,16.9161211952138)
4724.17556801612 = slip(2135.25942084311,384.86912152873)
19.9477072615632 = beat(111.307357343015,16.9161211952138) ; / 4 =
4.98692681539079
1067.62971042156 = slip(19.8549641949401,4.98692681539079)
4724.17556801612 = slip(1067.62971042156,384.86912152873)
192.434560764365 = slip(48.6117359109827,8.45806059760692)
2362.08778400806 = slip(1067.62971042156,192.434560764365)
algebra:
2362.08778401334 = 1/(31/11.8627021700857-77/29.4701958106261)
4724.17556802668 = 2/(31/11.8627021700857-77/29.4701958106261)
tropical
4724 years &
2362 years (orbital invariant: 0=-2+5+3-6)
Seidelmann (1992) tropical
2361.92512664087 = 1/(-2/11.85652502+5/29.42351935+3/83.74740682-6/163.7232045)
4723.85025328173 = 2/(-2/11.85652502+5/29.42351935+3/83.74740682-6/163.7232045)
NASA ‘factsheet’ tropical
2362.05130068208 = 1/(-2/11.8565229295003+5/29.4235181382615+3/83.7474058863792-6/163.723203285421)
4724.10260136417 = 2/(-2/11.8565229295003+5/29.4235181382615+3/83.7474058863792-6/163.723203285421)
adjusting Seidelmann (1992) short-duration sidereal earth to a long-duration 4724 year tuning:
4723.99999667307 = 1/(-693.5/0.615197263396975+1166.5/1.00001741532595-465/11.8626151546089)
1.00001741532595 = 365.256360947803 days ; compare:
1.0000174152119 = 365.256360906146 days —- Standish (1992) sidereal
easy hindsight
supplementary notes on geophysical 64 year structure previously illustrated & explored
Standish nodal with day
3.93839482956483 = slip(1.00001071395229,0.0027378507871321)
63.8858575898369 = slip(3.93839482956483,1.00001071395229) ~= 64 year
Meeus & Savoie tropical with day
4.12891838459878 = slip(0.999978614647502,0.0027378507871321)
32.0054607170862 = slip(4.12891838459878,0.999978614647502) ~= 32 year
supplementary note on 26 (& 52) year geophysical structure(s) previously noted
Standish anomalistic with day
3.85237502099482 = slip(1.0000262476142,0.0027378507871321)
26.077823955957 = slip(3.85237502099482,1.0000262476142) ~= 26 year
JSEV tropical (Seidelmann 1992)
1.59868953279706 = beat(0.99997862,0.61518257)
0.799344766398529 = 1.59868953279706 / 2
0.399672383199264 = 1.59868953279706 / 4
0.761743683794994 = harmean(0.99997862,0.61518257)
0.380871841897497 = axial(0.99997862,0.61518257)
0.190435920948749 = 0.380871841897497 / 2
0.0952179604743743 = 0.380871841897497 / 4
61.0914225103732 = slip(29.42351935,11.85652502)
0.771361726706669 = beat(61.0914225103732,0.761743683794994)
0.385680863353334 = 0.771361726706669 / 2
0.192840431676667 = 0.771361726706669 / 4
1.50472508020829 = harmean(61.0914225103732,0.761743683794994)
0.752362540104143 = axial(61.0914225103732,0.761743683794994)
0.376181270052072 = 0.752362540104143 / 2
0.188090635026036 = 0.752362540104143 / 4
12.800522799798 = slip(1.59868953279706,0.752362540104143)
6.40026139989901 = slip(1.59868953279706,0.376181270052072)
3.2001306999495 = slip(1.59868953279706,0.188090635026036)
1859.26427454788 = slip(12.800522799798,1.59868953279706)
1859.26427454788 = slip(6.40026139989901,1.59868953279706)
1859.26427454788 = slip(3.2001306999495,1.59868953279706)
929.632137273939 = slip(12.800522799798,0.799344766398529)
929.632137273939 = slip(6.40026139989901,0.799344766398529)
929.632137273939 = slip(3.2001306999495,0.799344766398529)
59.0007181299284 = slip(12.800522799798,0.190435920948749)
29.5003590649642 = slip(12.800522799798,0.0952179604743743)
29.5003590649642 = slip(6.40026139989901,0.0952179604743743)
JSUN tropical (Seidelmann 1992) 1470 year & 2402 year
8.45107360405992 = axial(29.42351935,11.85652502)
16.9021472081198 = harmean(29.42351935,11.85652502)
19.8588720868409 = beat(29.42351935,11.85652502)
3635.42278750964 = slip(163.7232045,83.74740682)
17760.7407596846 = slip(3635.42278750964,171.444289533663)
16.9182475901445 = beat(17760.7407596846,16.9021472081198)
8.45912379507225 = 16.9182475901445 / 2
4.22956189753613 = 16.9182475901445 / 4
33.7721548821359 = harmean(17760.7407596846,16.9021472081198)
16.886077441068 = axial(17760.7407596846,16.9021472081198)
8.44303872053399 = 16.886077441068 / 2
4.22151936026699 = 16.886077441068 / 4
114.253729166588 = slip(19.8588720868409,16.9182475901445)
57.1268645832942 = slip(19.8588720868409,8.45912379507225)
67.1361846326796 = slip(19.8588720868409,4.22151936026699)
475.496204649037 = slip(114.253729166588,16.9021472081198)
237.748102324519 = slip(114.253729166588,8.45107360405992)
118.874051162259 = slip(57.1268645832942,4.22553680202996)
2939.57946202776 = slip(114.253729166588,4.22553680202996) ~= 2940
2939.57946202744 = slip(475.496204649037,114.253729166588)
2939.57946202744 = slip(237.748102324519,114.253729166588)
2939.57946202744 = slip(118.874051162259,114.253729166588)
1469.78973101388 = slip(114.253729166588,2.11276840101498) ~= 1470
1469.78973101372 = slip(475.496204649037,57.1268645832942)
1469.78973101372 = slip(237.748102324519,57.1268645832942)
1469.78973101372 = slip(118.874051162259,57.1268645832942)
2402.06517243955 = slip(67.1361846326796,16.9021472081198) ~= 2402
Amicable Bonds (tropical version)
“consensus” of Seidelmann (1992) & NASA ‘factsheet’
29.4235187441307 = harmean(29.42351935,29.4235181382615)
11.8565239747501 = harmean(11.85652502,11.8565229295003)
0.999978358596783 = harmean(0.99997862,0.999978097193703)
0.615181976306751 = harmean(0.61518257,0.615181382614647)
explore what others might have in mind:
0.615181976285804 — tuned to “4670 years” (remember Bond pub. with 1800 & 4670 graph)
0.999978614647502 — Meeus & Savoie (1992) rounded-off value used by so many
1791.85469669027 = 1/(-8/11.8565239747501+16/29.4235187441307+13/0.615181976285804-21/0.999978614647502)
1799.99949076613 = 221/220/(-8/11.8565239747501+16/29.4235187441307+13/0.615181976285804-21/0.999978614647502)
1791.85469669027 = axial(395999.88796855,1799.99949076613)
1791.85469669027 = axial( 220 * 1799.99949076613 , 1799.99949076613 )
gives:
1.59868553691508 = beat(0.999978614647502,0.615181976285804)
0.799342768457541 = 1.59868553691508 / 2
0.399671384228771 = 1.59868553691508 / 4
0.761743227089166 = harmean(0.999978614647502,0.615181976285804)
0.380871613544583 = axial(0.999978614647502,0.615181976285804)
0.190435806772291 = 0.380871613544583 / 2
0.0952179033861457 = 0.380871613544583 / 4
0.771361261986248 = beat(61.0913999839243,0.761743227089166)
0.385680630993124 = 0.771361261986248 / 2
0.192840315496562 = 0.771361261986248 / 4
1.50472418232299 = harmean(61.0913999839243,0.761743227089166)
0.752362091161495 = axial(61.0913999839243,0.761743227089166)
0.376181045580747 = 0.752362091161495 / 2
0.188090522790374 = 0.752362091161495 / 4
22.0353413519587 = slip(1.59868553691508,0.771361261986248)
11.0176706759793 = slip(1.59868553691508,0.385680630993124)
12.8009052113462 = slip(1.59868553691508,0.752362091161495)
304.013638441169 = slip(22.0353413519587,0.761743227089166)
152.006819220584 = slip(22.0353413519587,0.380871613544583)
76.0034096102922 = slip(22.0353413519587,0.190435806772291)
76 = 163 mod 24 + 67 mod 24 + 43 mod 24 + 19 mod 24 = 19 + 19 + 19 + 19
1791.85469667879 = slip(12.8009052113462,1.59868553691508)
1799.99949075461 = 221 / 220 * 1791.85469667879
164.876143595902 = slip(22.0353413519587,0.399671384228771) ———– z
4670.79912511218 = slip(164.876143595902,11.0176706759793)
perfect: s(496) = 496 = s(652) = s(s(608))
608.027276881365 = 2/(-29/11.8565239747501+58/29.4235187441307-44/0.615181976285804+72/0.999978614647502)
1216.05455376273 = 4/(-29/11.8565239747501+58/29.4235187441307-44/0.615181976285804+72/0.999978614647502)
2432.10910752546 = 8/(-29/11.8565239747501+58/29.4235187441307-44/0.615181976285804+72/0.999978614647502)
1800 & 4670 years:
weather myth or math?
lunisolar precession with tropical “Consenzus”
11.8619917685154 = beat(25721.8900031954,11.8565239747501) — LLR
11.8619917394734 = beat(25722.0265616918,11.8565239747501) — harmean(LLR,W94)
11.8619917104315 = beat(25722.1631216381,11.8565239747501) — W94
with anomalistic heavyweight Jupiter
198078.497253751 = beat(11.8627021700857,11.8619917685154) ; * 2 = 396156.994507502
198070.399443988 = beat(11.8627021700857,11.8619917394734) ; * 2 = 396140.798887976
198062.302295769 = beat(11.8627021700857,11.8619917104315) ; * 2 = 396124.604591539
1799.99857738802 = beat(396156.994507502,1791.85700697991)
1799.9989117563 = beat(396140.798887976,1791.85700697991)
1799.99924612472 = beat(396124.604591539,1791.85700697991)
gives 4672.37005613987 (using 0.615181976306751 = harmean(0.61518257,0.615181382614647))
1799.9962460564 = beat(396156.994507502,1791.85469669027)
1799.99658042381 = beat(396140.798887976,1791.85469669027)
1799.99691479137 = beat(396124.604591539,1791.85469669027)
gives 4670.7991 (using 0.615181976285804)
a reverse view bringz estimate ll’un ‘uz ole lore PR’ cz!sun from tropical!Jupiter “consensus”
with 0.615181976306751 = harmean(0.61518257,0.615181382614647) & 4672.37005613987 :
396088.097411778 = beat(1800,1791.85700697991) ; / 2 = 198044.048705889
11.8619916449528 = axial(198044.048705889,11.8627021700857)
25722.4710182008 = beat(11.8619916449528,11.8565239747501)
with 0.615181976285804 & 4670.7991 :
395975.242590358 = beat(1800,1791.85469669027) ; / 2 = 197987.621295179
11.8619914424619 = axial(197987.621295179,11.8627021700857)
25723.4232260154 = beat(11.8619914424619,11.8565239747501)
also note
Standish sidereal with Standish anomalistic
197810.936263778 = beat(11.8627021700857,11.861990807677) ; / 2 = 395621.872527555
Standish sidereal with NASA ‘factsheet’ tropical
25721.4885660692 = beat(11.861990807677,11.8565229295003)
25721.8900031954 = LLR lunisolar precession
11.8565229295003 = NASA ‘factsheet’ tropical Jupiter
11.8565230147972 = axial(25721.8900031954,11.861990807677)
4 those who (anomalistically) are averse (“Can˚T get from the Cab to the C[I]RB” — The ‘PR 10’ drs)
2 amicable bonds
Enough $aid Sir Pentagon
terre$ketchof whether
loony so lure
buy USamicably
COMBINE Sidorenkov (2017) short-duration sidereal
WITH Standish long-duration anomalistic
883.352600477237 = harmean(936.955612197409,835.550927105136)
984.598022541318 = beat( 25771.4533429313 / 3 , 883.352600477237 )
˚T?hird harmonic of General precession arises from opposing trigon COefficients (5 – 2 = 3) in sidereal-tropical conversion (use to detect bias inside pub.lists)
979.992217251443 = beat(984.598022541318,491.144860474028) ; * 75 / 2 =
36749.7081469291 ; compare:
36749.7014379182 — La2011 Table 6 La2010a
lunisolar bias estimate using Seidelmann (1992) short-duration sidereal JSU
491.144860474028 = 1/(-3187.5/11.8626151546089+10462.5/29.4474984673838-7275/84.016845922161-37.5/30031-3/25771.4533429313+1/883.339228237648)
noteworthy: 50482100 (rounded-off version of 50482096)
systematically links NA!SA ‘factsheet’ & Seidelmann (1992) tropical (no. mystery in such hindsite)
0.999978614647502 widely-cited rounded-off Meeus & Savoie (1992) tropical
0.99997861640616 = 31/(-3187.5/11.8626151546089+10462.5/29.4474984673838-7275/84.016845922161-37.5/30031+21/0.0745030006844627+10/0.0754402464065708-31/0.0808503463381246-3/25770.7446092762+1/883.339228237648)
off by 1 minute (time no. T˚angle) per century
0.999978616353183 unrounded Meeus & Savoie (1992)
supplementary
0 = -42.5 + 139.5 – 97
33052.6240611784 = 1/(-42.5/11.8626151546089+139.5/29.4474984673838-97/84.016845922161)
36750.3253473747 = 1/(-85/11.8626151546089+279/29.4474984673838-194/84.016845922161-1/30031)
36135.2499680199 = 1/(-85/11.8626151546089+279/29.4474984673838-194/84.016845922161-1/30031+0.5/83.7474058863792-0.5/163.723203285421-0.5/84.0331316671926+0.5/164.793624044745)
15009.1624932282 = 1/(-85/11.8626151546089+279/29.4474984673838-194/84.016845922161-1/30031+0.5/83.7474058863792-0.5/163.723203285421-0.5/84.0331316671926+0.5/164.793624044745+2/25721.8900031954-1/25771.4533429313)
5482096.60065159 = 365.25/(-85/11.8626151546089+279/29.4474984673838-194/84.016845922161-1/30031+0.5/83.7474058863792-0.5/163.723203285421-0.5/84.0331316671926+0.5/164.793624044745+2/25721.8900031954-1/25771.4533429313)
0 = 31 – 21 – 10
491.132481368366 = 1/(31*(1/0.999978614647502+1/0.0808503463381246)-21/0.0745030006844627-10/0.0754402464065708)
491.145236548486 = 1/(31*(1/0.999978616353183+1/0.0808503463381246)-21/0.0745030006844627-10/0.0754402464065708)
derive
0.0748024157879311 = axial(0.999978616353183,0.0808503463381246)
5.99685290323073 = beat(0.0754402464065708,0.0745030006844627)
18.6129703214384 = beat(0.0748024157879311,0.0745030006844627)
8.84735306511776 = beat(0.0754402464065708,0.0748024157879311)
16.8627866218841 = beat(18.6129703214384,8.84735306511776)
179.333487684639 = slip(18.6129703214384,8.84735306511776)
ace shown
491.145236537217 = slip(179.333487684639,16.8627866218841)
984.581409347557 = beat( 25771.4533429313 / 3 , 883.339228237648 )
984.584512785494 = beat( 25770.7446092762 / 3 , 883.339228237648 )
984.587616242996 = beat( 25770.0359146014 / 3 , 883.339228237648 )
980.01017321043 = beat(984.581409347557,491.145236537217)
980.007098542353 = beat(984.584512785494,491.145236537217)
980.004023893569 = beat(984.587616242996,491.145236537217)
36750.3814953911 = 75 / 2 * 980.01017321043
36750.2661953382 = 75 / 2 * 980.007098542353
36750.1508960089 = 75 / 2 * 980.004023893569
36135.3042523091 = axial(2159056.00745389,36750.3814953911)
15009.1718585901 = axial(36135.3042523091,25672.5169367299)
5482100.02135004
review
Berger 1988 Table 4 (based on Berger 1978)
2166101.14285714 = beat(75259,72732)
36748.2810485504 = beat(2166101.14285714,36135.2404360745)
note$ trees in llUNe^don foresst matrix calllculaceyen
2159056.00745301 = 2 * beat(171.471519050756,171.444286952825)
SSTand!sh anomalistic with ‘factsheet’ tropical
PC in
fact ch.UK IT
luke dawn sank$yuan tyrant$
R out of ˚T ou ch! within UKquality
36750.3190131859 = 1/(g_3+g_4) — La2021 Table 2 with explore a tory add “just” (weather mint or) mean˚T
36135.2438440821 = axial(2159056.00745389,36750.3190131859)
15009.1614366987 = axial(36135.2438440821,25672.5169367299)
5482096.21475421 —- pub.list.cz!is note$baseofllreflect$yen=peace$ together quickly
120,000 “noteworthy” Typo Solutions
won over UN √8
1800 ~= 1 / √8 * 5090
4670 = s(4370) + (378-178)*2
owe bowl’n’Valley
323 = 196883-196560
“bye don!” Jail˚Talk
25746 = Σs(5090) – ΣΦ(323)
25746 = Σs(5090) – ΣΦ(936)
0 LA˚Table
25722 = Σs(5090) – (378-178)*2 – 71
25746 = Σs(5090) – (378-178)*2 – 47
25770 = Σs(5090) – (378-178)/2 – 196883 + 196560
too Sell a con
25808 = Σs(5090) – 11#/3#
25808 = Σs(5090) – 7*(28^2-27^2)
25808 = Σs(5090) – 7*(1^2+2^2+3^2+4^2+5^2)
——————–
s(5090) = 4090
s(4090) = 3290
s(3290) = 3622
s(3622) = 1814
s(1814) = 910
s(910) = 1106
s(1106) = 814
s(814) = 554
s(554) = 280
s(280) = 440
s(440) = 640
s(640) = 890
s(890) = 730
s(730) = 602
s(602) = 454
s(454) = 230
s(230) = 202
s(202) = 104
s(104) = 106
s(106) = 56
s(56) = 64
s(64) = 63
s(63) = 41
s(41) = 1
s(1) = 0
th borg herd sum??un
26193 = Σs(5090)
ABout what nos.˚TemperUN
317 years
anomalistic JSU
the very top-level cycle is a familiar one
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
21.1796477480038 = beat(84.0331316671926,16.9161211952138)
317.450267066043 = slip(21.1796477480038,19.8549641949401)
ok
2545 = ΣΣδ(220)
5090 = ΣΣδ(220) * 2
unI˚Que.T˚A CO$metallica
400 = s(2401) = 2*(378-178) = s(836-42) = s(496+28) = 744-104-240
400 = ΣΦ(323) – Σφ(323) ; 447 = ΣΦ(323) ; 47 = Σφ(323)
400 = Σs(242) ; 242 = ΣΣΔ(178)-ΣΣφ(178) = average(ΣΔ(220),Σδ(220)) = ΣΦ(163)-Σφ(163)
993 = (σ^2)(400) ; Σδ(Σδ(993)) = Σδ(Σδ(Σδ(378))) = 902 = Σδ(894) ; Σδ(902) = 894
σ(894) = σ(1691) = 1800 ; ΣΦ(1800) = 735 ; 600 = σ(216)
216 = 378 – (163+67+43+19+28) + (10+13+18+22+37+58)
J[amai$SUNami]11buy
100 = average(-ΣΦ(220),Σφ(220)) = average(-178,378) = 71-Σδ(42)
100 = average(-Σφ(323),ΣΦ(323))/2 = 4370-s(4370) = s(194)
100 = 2+3+5+7+11+13+17+19+23 = Σ(primes up to 23)
100 = 2+3+5+7+11+13+17+19+23 = 41+59 = 29+71 = 31+47+(378 mod 178)
178 = 2+3+5+7+11+13+17+19+23 + 31+47
200 = 2+3+5+7+11+13+17+19+23 + 41+59
300 = 2+3+5+7+11+13+17+19+23 + 41+59 + 29+71
378 = 2+3+5+7+11+13+17+19+23 + 41+59 + 29+71 + 31+47
done “ch.op.eur.bri˚k
25722 = Σs(5090) – 400 – 71
25746 = Σs(5090) – 400 – 47
25770 = Σs(5090) – 100 – 196883 + 196560
f(sst) 0˚NA(!w)ru|ur”
σ(Φ(47))^5 – Φ(47)^5 – 47^5 = 19^5 + 43^5 + 67^5
25722 = Σs(5090) – s(2401) – 71
25746 = Σs(5090) – ΣΦ(196883-196560) + Σφ(196883-196560)) – 47
25770 = Σs(5090) – 4370 + s(4370) – 323 ; 4370 – s(4370) = s(194)
Standish (1992) anomalitic:
317.450267066044 = 1/(1/2/11.8627021700857-3/2/29.4701958106261+1/84.0331316671926)
˚Too *$ the conCOIIUSh’n’writeSAMicAB11y
25674 = Σs(5090)-Σs(242)-47-average(59*59,-47*71)
242 = 71 + 171
714463914.954807 = beat(29.42351935,29.4235181382615) —– (Seidelmann1992,NASA’factsheet’)
1714009140.222 = beat(29.447498973306,29.4474984673838) — (Seidelmann1992,Sidorenkov2017)
IT$UNknown ‘weather friendly’ giants are in2cn moonSST!R UShine
1225154850 = beat(1714009140.222,714463914.954807)
2450309700, 4900619400, 9801238800, …
3675464550, 7350929100, 14701858201, …
(m)essturn wise sh!owe D-IT B(!w)(un)k(umou)
242 = ΣΣΔ(178)-ΣΣφ(178) = average(ΣΔ(220),Σδ(220)) = ΣΦ(163)-Σφ(163)
29.4474987203449 = harmean(29.447498973306,29.4474984673838) — (Seidelmann1992,Sidorenkov2017)
29.4235187441307 = harmean(29.42351935,29.4235181382615) —– (Seidelmann1992,NASA’factsheet’)
36132.1889074394 = beat(29.4474987203449,29.4235187441307)
25674 = beat(36132.1889074394,15009.1608487337) ; 15009.1608487337 = 5482096/365.25
142 = ΣΔ(220) = 2*71
242 = average(142,342) = 2*11^2 = 71+171
342 = Σδ(220) = 2*171
4724 to 5256
25761.5669315114 = beat(1.00001743371442,0.999978616353183) —- Seidelmann1992
25768.5314808954 = harmean(25775.4997969807,25761.5669315114) —————————-
25775.4997969807 = beat(1.00001741273101,0.999978616353183) —- Sidorenkov2017
25773.8517155112 = beat(1.0000174152119,0.999978616353183) — Standish1992 (mediates)
5256.6393995685 J
5254.8227273181 S
5258.32377697949 U
5255.227007452 N
5256.25286945517 = JSUN harmean
5256.24218758401
= beat( beat( 25808.2447032344, 25773.8517155112 / 2 ) / 6 , 2362.08778401782 )
anomalistic-nodal 2320 years
16.9161211952138 = harmean(29.4701958106261,11.8627021700857) — anomalistic
61.0124738503575 = slip(29.4511026866654,11.862499899747) —– nodal
851.495746676794 = slip(61.0124738503575,19.8630730877524) — nodal
derivation (via generalized Bollinger method)
16.5866057119762 = axial(851.49574667679,16.9161211952138)
100.762038265834 = slip(19.8549641949401,16.5866057119762)
2320.03347068461 = slip(100.762038265834,16.9161211952138)
2320.03347068424 = 1/(-7/2/11.8627021700857+17/2/29.4701958106261-12/11.862499899747+30/29.4511026866654)
purely anomalistic 2362 years derived above
2362.08778401334 = 1/(31/11.8627021700857-77/29.4701958106261)
combine
130310.598028785 = beat(2362.08778401334,2320.03347068424)
130310.598021243 = 1/(-69/2/11.8627021700857+171/2/29.4701958106261-12/11.862499899747+30/29.4511026866654)
compare
130192.356944535 = beat(2362.05130068208,2319.96076275948) — NASA ‘factsheet’ tropical
orbital invariant with harmonic means of Seidelmann & NASA ‘factsheet’ tropical:
130476.603432851 = 1/(3/11.8565239747501-8/29.4235187441307-2/83.7474063531896+7/163.72320389271)
130762.093817962 = beat(2361.92512664087,2320.01916295313) — Seidelmann tropical
130704.452624679 = beat(173901.37537739,74619.9907876555) — La(2004a,2010a)average
nodal-anomalistic 836 years
9.93153654387618 = 19.8630730877524 / 2
19.8630730877524 = beat(29.4511026866654,11.862499899747) —————– nodal
16.912768715208 = harmean(29.4511026866654,11.862499899747) ————- nodal
6.57189983390616 = axial( 29.4701958106261 / 2 , 11.8627021700857 ) —- anomalistic
10.7485186386365 = beat(16.912768715208,6.57189983390616)
130.662968425853 = slip(19.8630730877524,10.7485186386365)
835.601801700049 = slip(130.662968425853,9.93153654387618)
836 = 11 * ( mod(163,24) + mod(67,24) + mod(43,24) + mod(19,24) )
“836 is the smallest weird number that is also an untouchable number”
JS Heart
4.96576827193809 = 19.8630730877524 / 4
9.93153654387618 = 19.8630730877524 / 2
19.8630730877524 = beat(29.4511026866654,11.862499899747) —————– nodal
2.114096089401 = 8.456384357604 / 4
4.228192178802 = 8.456384357604 / 2
8.456384357604 = axial(29.4511026866654,11.862499899747)
16.912768715208 = harmean(29.4511026866654,11.862499899747) ————- nodal
6.57189983390616 = axial( 29.4701958106261 / 2 , 11.8627021700857 ) —- anomalistic
set up generalized Bollinger method
10.7485186386365 = beat(16.912768715208,6.57189983390616)
5.37425931931824 = 10.7485186386365 / 2
2.68712965965912 = 10.7485186386365 / 4
4.73283332391597 = axial(16.912768715208,6.57189983390616)
2.36641666195799 = 4.73283332391597 / 2
1.18320833097899 = 4.73283332391597 / 4
130.662968425853 = slip(19.8630730877524,10.7485186386365)
65.3314842129265 = slip(19.8630730877524,5.37425931931824)
50.6802153502585 = slip(19.8630730877524,2.68712965965912)
100.895781229192 = slip(19.8630730877524,4.73283332391597)
50.4478906145961 = slip(19.8630730877524,2.36641666195799)
93.4596178908348 = slip(19.8630730877524,1.18320833097899)
derive 317, 836, 1470, 1800, 4670, 100ka, & more (some omitted for now)
2937.90591403587 = slip(100.895781229192,16.912768715208)
1468.95295701793 = slip(100.895781229192,8.456384357604)
734.476478508967 = slip(100.895781229192,4.228192178802)
734.476478508967 = slip(50.4478906145961,4.228192178802)
1798.69939643745 = slip(93.4596178908348,8.456384357604)
899.349698218727 = slip(93.4596178908348,4.228192178802)
317.021047394046 = slip(100.895781229192,4.96576827193809)
317.021047394066 = slip(93.4596178908348,19.8630730877524)
835.601801700049 = slip(130.662968425853,9.93153654387618)
835.601801700049 = slip(309.763646655713,130.662968425853)
835.601801700042 = slip(225.988187105058,130.662968425853)
835.60180170002 = slip(130.662968425853,112.994093552529)
where
309.763646655713 = slip(130.662968425853,19.8630730877524)
225.988187105058 = slip(65.3314842129265,19.8630730877524)
112.994093552529 = slip(50.6802153502585,19.8630730877524)
4670.02054486764 = slip(1344.24031754827,130.662968425853)
where
1344.24031754827 = slip(130.662968425853,4.228192178802)
1344.24031754825 = slip(144.731137488337,130.662968425853)
144.731137488337 = slip(65.3314842129265,4.228192178802)
198956.792259811 = slip(14755.2250793229,130.662968425853)
99478.3961299054 = slip(14755.2250793229,65.3314842129265)
where
14755.2250793229 = slip(50.6802153502585,16.912768715208)
compare sidereal vs. anomalistic
16.9132450828034 = harmean(29.4571309198874,11.861990807677)
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
99476.8155050052 = beat(16.9161211952138,16.9132450828034)
99477 review
Seidelmann (1992) sidereal earth
1.00001743390371 = (1-(1/240)^1)^(0/1)/(1-(1/240)^2)^(2/2)/(1-(1/240)^3)^(3/3)/(1-(1/240)^4)^(2/4)/(1-(1/240)^5)^(5/5)/(1-(1/240)^6)^(1/6)
1.00001743390371 = (1-(1/σ(σ(σ(73))))^1)^(0/1)/(1-(1/σ(σ(σ(73))))^2)^(2/2)/(1-(1/σ(σ(σ(73))))^3)^(3/3)/(1-(1/σ(σ(σ(73))))^4)^(2/4)/(1-(1/σ(σ(σ(73))))^5)^(5/5)/(1-(1/σ(σ(σ(73))))^6)^(1/6)
1.00001743390371 = (1-(1/σ(209))^1)^(0/1)/(1-(1/σ(209))^2)^(2/2)/(1-(1/σ(209))^3)^(3/3)/(1-(1/σ(209))^4)^(2/4)/(1-(1/σ(209))^5)^(5/5)/(1-(1/σ(209))^6)^(1/6)
1.00001743390371 = (1-(1/σ(47+59+71))^1)^(0/1)/(1-(1/σ(47+59+71))^2)^(2/2)/(1-(1/σ(47+59+71))^3)^(3/3)/(1-(1/σ(47+59+71))^4)^(2/4)/(1-(1/σ(47+59+71))^5)^(5/5)/(1-(1/σ(47+59+71))^6)^(1/6)
1.00001743390371 = (1-(1/σ(average(320,158)))^1)^(0/1)/(1-(1/σ(average(320,158)))^2)^(2/2)/(1-(1/σ(average(320,158)))^3)^(3/3)/(1-(1/σ(average(320,158)))^4)^(2/4)/(1-(1/σ(average(320,158)))^5)^(5/5)/(1-(1/σ(average(320,158)))^6)^(1/6)
1.00001743390371 = (1-(1/σ(average(28+163+67+43+19,10+13+18+22+37+58)))^1)^(0/1)/(1-(1/σ(average(28+163+67+43+19,10+13+18+22+37+58)))^2)^(2/2)/(1-(1/σ(average(28+163+67+43+19,10+13+18+22+37+58)))^3)^(3/3)/(1-(1/σ(average(28+163+67+43+19,10+13+18+22+37+58)))^4)^(2/4)/(1-(1/σ(average(28+163+67+43+19,10+13+18+22+37+58)))^5)^(5/5)/(1-(1/σ(average(28+163+67+43+19,10+13+18+22+37+58)))^6)^(1/6)
keywords: Schneider, E8, monster, Ramanujan
73: lowest prime congruent to 1 mod 24
another 317 year note
744 = σ(743)
743.744122286576 = slip(317.021047394066,130.662968425853)
744 = σ(240)
240 = σ(σ(σ(73))) = σ(average(320,158)) = σ(average(28+163+67+43+19,10+13+18+22+37+58))
examples:
104 = d(2,1/2,58) = R(2,1/2,58) – R(1,1/2,58)
104 = d(4,1/2,58) = R(4,1/2,58) – R(1,1/2,58)
R(4,1/2,58) = 104.000034332275 = ⌊(e^√58π)^(1/4)⌉^4 – e^√58π
R(2,1/2,58) = 104.000034332275 = ⌊(e^√58π)^(1/2)⌉^2 – e^√58π
R(1,1/2,58) = 0.000034332275390625 = ⌊(e^√58π)^(1/1)⌉^1 – e^√58π
744 = d(3,1/2,28) = R(3,1/2,28) – R(1,1/2,28)
R(3,1/2,28) = 744.01187441498 = ⌊(e^√28π)^(1/3)⌉^3 – e^√28π
R(1,1/2,28) = 0.0118744149804115 = ⌊(e^√28π)^(1/1)⌉^1 – e^√28π
The middle argument “1/2” corresponds to “√” — i.e. raise to power 1/2; e.g. 28^(1/2) = √28
744 = σ(240)
240 =σ(209) = σ(47+59+71) = σ(average(ΣΦ(216),Σφ(216)))
216 = 378-ΣΔ(378) = Φ(ΣΦ(323)+Σφ(323))
1.00001743390371 = (1-(1/σ(average(ΣΦ(216),Σφ(216))))^1)^(0/1)/(1-(1/σ(average(ΣΦ(216),Σφ(216))))^2)^(2/2)/(1-(1/σ(average(ΣΦ(216),Σφ(216))))^3)^(3/3)/(1-(1/σ(average(ΣΦ(216),Σφ(216))))^4)^(2/4)/(1-(1/σ(average(ΣΦ(216),Σφ(216))))^5)^(5/5)/(1-(1/σ(average(ΣΦ(216),Σφ(216))))^6)^(1/6)
Seidelmann (consciously? or not?) simply substituted 240 for Schneider‘s phi.
Seidelmann (1992) synodic helps clarify bias structure.
11.8619992845449 = 1/(-1/1.0920848733744+1/1.00001743301243) — note sidereal earth period
29.4571720000365 = 1/(-1/1.03515920602327+1/1.00001743301243)
936.955612647599 = 1/(178/11.8619992845449-442/29.4571720000365)
1800.77215359294 = 1/(29/11.8619992845449-72/29.4571720000365)
11.8619992845449 = beat(1.0920848733744,1.00001743301243)
29.4571720000365 = beat(1.03515920602327,1.00001743301243)
set up generalized Bollinger method
19.8589101021728 = beat(29.4571720000365,11.8619992845449)
9.92945505108639 = 19.8589101021728 / 2
4.9647275255432 = 19.8589101021728 / 4
16.9132604709107 = harmean(29.4571720000365,11.8619992845449)
8.45663023545537 = axial(29.4571720000365,11.8619992845449)
4.22831511772768 = 8.45663023545537 / 2
2.11415755886384 = 8.45663023545537 / 4
10.7442781148351 = beat(16.9132604709107,6.57038853131229)
5.37213905741754 = 10.7442781148351 / 2
2.68606952870877 = 10.7442781148351 / 4
9.46417591360268 = harmean(16.9132604709107,6.57038853131229)
4.73208795680134 = axial(16.9132604709107,6.57038853131229)
2.36604397840067 = 4.73208795680134 / 2
1.18302198920033 = 4.73208795680134 / 4
derive 936 & 1800
130.930052601617 = slip(19.8589101021728,10.7442781148351)
65.4650263008087 = slip(19.8589101021728,5.37213905741754)
506.04166179034 = slip(130.930052601617,16.9132604709107)
703.826579261491 = slip(130.930052601617,9.92945505108639)
1800.77215358773 = beat(703.826579261491,506.04166179034)
351.913289630745 = slip(130.930052601617,4.9647275255432)
936.955612639497 = slip(351.913289630745,65.4650263008087)
3747.82245055826 = slip(130.930052601617,4.22831511772768) ; / 4 = 936.955612639565
Introducing Moonshine Bias
1.0000262476142 —- Standish (1992) anomalistic earth period
1.00002624761586 = 30/(15/0.0745030006844627+16/0.0754402464065708-31/0.0808503463381246-1/2364963.50364963+8/7201)
2364963.50364963 = beat(74619.9907876555,72337.575351641) — La(2004a,2010a)average
7201: 1, 19, 379, 7201; harmean = 3.79
7201 = 19 + ( 19 * 378 )
7200.99967683779 = 8/(30/1.0000262476142-15/0.0745030006844627-16/0.0754402464065708+31/0.0808503463381246+1/2364963.50364963)
7201.000000 = 8/(30/1.00002624761586-15/0.0745030006844627-16/0.0754402464065708+31/0.0808503463381246+1/2364963.50364963)
_____________________________________________________________________________________________
monstrous error:
-0.000023823837 seconds ( temporal (not angular) ) per century
supplementary art dove wiser
118239.762151809 = beat(1814.75583949423,1787.32381267774)
1800.249870433 = harmean(2364795.24303618,900.467685151888)
1800.2498895435 = harmean(2364861.19623035,900.467685151888)
1800.24991918585 = harmean(2364963.50364963,900.467685151888)
scale(un)80/4
84.021214079097 = beat(1.0120629705681,1.00001743390371)
164.770564556546 = beat(1.00612375085558,1.00001743390371)
111.291642790288 = harmean(164.770564556546,84.021214079097)
111.307357343015 = harmean(164.793624044745,84.0331316671926)
788287.065410296 = beat(111.307357343015,111.291642790288)
2364861.19623089 = 3 * 788287.065410296
Swiss bunkers watch M11
0 = ⌊(70^2-55)/2^x-2^(2^2^2-x)*27/365.25⌉, x=0,1,2,…
317.44 = s(s(608))*(2/(Φ+φ))^4
317.44 = 496*(4/5)^2 = 496*16/25
What Fairbridge said was:
‘[…] 317.749 years […]. A storminess record in geomorphic (that is, physical) form is preserved in a “staircase” of 184 isostatically uplifted beach lines on Hudson Bay (Fairbridge and Hillaire-Marcel” 1977, Nature. Vol. 268), which date back to more than 8,000 years. Their extraordinary regularity is duplicated in other parts of the Arctic, which denies any theory of randomness in storminess cycles. […]’
25684 = Σs(5090) – 509 ; 509 * 59 = 30031; 30031 lowest primorial+1 not prime
25808 = beat(beat(25746,25684),25746) = 1/(2/25746-1/25684)
Phi(un)ally Perfect
sidereal JS estimates
x = average(Φ,φ)√√(y/496); search “why?” = 317.45026706604
106975.540995836 = beat(1.00001743390371,1.00000808573393)
19.8549641949401 = beat(29.4701958106261,11.8627021700857) — anomalistic
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
with sense(un)a dove mercury:
231842.576028623 = 1 / g_1
σ(25808) = 50034; * 2 = 100068
198928.033687742 = beat(231428.571428571,106975.540995836)
16.9132447127788 = axial(99464.016843871,16.9161211952138)
19.8589044939136 = beat(100068,19.8549641949401)
14.7285651846795 = beat(19.8589044939136,8.45662235638942)
5.93099526646578 = axial(19.8589044939136,8.45662235638942)
19.8589044939136 = beat(29.4571303693591,11.8619905329316) — compare Standish sidereal
4.73208318183218 = axial(16.9132447127788,6.57038170393041)
2.36604159091609 = 4.73208318183218 / 2
1.18302079545805 = 4.73208318183218 / 4
100.985212897808 = slip(19.8589044939136,4.73208318183218)
50.4926064489041 = slip(19.8589044939136,2.36604159091609)
93.0623385488049 = slip(19.8589044939136,1.18302079545805) ~= 744/8
⌊744.498708390439⌉ = 744
3455.67836213557 = slip(50.492606448904,16.9132447127788)
enlightenin’12sense: aro(un)d‘ve 3456 sing un
1727.83918106778 = slip(50.492606448904,8.45662235638942)
1186.17557935921 = slip(100.985212897808,19.8589044939136)
3455.67836213692 = slip(100.985212897808,16.9132447127788)
3455.67836213692 = slip(50.4926064489041,16.9132447127788)
1727.83918106846 = slip(100.985212897808,8.45662235638942)
1727.83918106846 = slip(50.4926064489041,8.45662235638942)
⌊1727.83918106846⌉ = 1728
no. won nos. weather myth or math
at the Heart of Fleur Dehli nos.
317.021047394046 = “why?”
2876.43697242977 = beat(1.00001743390371,0.999669890283597)
2876.43340223995 = (5+Φ)*2^9
100, 496, 836, 73500
19.8589044939136 = beat(28.8814946499969,11.7675450749242)
9.92945224695679 = 19.8589044939136 / 2
4.9647261234784 = 19.8589044939136 / 4
16.7218853102037 = harmean(28.8814946499969,11.7675450749242)
8.36094265510182 = axial(28.8814946499969,11.7675450749242)
4.18047132755091 = 8.36094265510182 / 2
2.09023566377546 = 8.36094265510182 / 4
10.5902904904416 = beat(16.7218853102037,6.48390755374098)
5.29514524522082 = 10.5902904904416 / 2
2.64757262261041 = 10.5902904904416 / 4
159.124845970951 = slip(19.8589044939136,10.5902904904416)
1246.02534363448 = slip(159.124845970951,2.09023566377546); coefficient 76
7350.70156103038 = slip(1246.02534363448,159.124845970951)
2492.05068726896 = slip(159.124845970951,4.18047132755091)
7350.70156103038 = slip(2492.05068726896,159.124845970951)
79.5624229854757 = slip(19.8589044939136,5.29514524522082)
3675.35078051519 = slip(1246.02534363448,79.5624229854757)
3115.06335908839 = slip(79.3092165212675,4.9647261234784)
7350.70156127398 = slip(3115.06335908839,159.124845970951)
12460.2534363458 = slip(159.124845970951,19.8589044939136)
30082.0055397318 = slip(12460.2534363571,4.18047132755091)
323010.783812806 = slip(30082.0055397318,79.5624229854757); coefficient 378
simple enough
plate 000˚k (Alive in 1728 over herd “he’s just taco˚k shun”)
quote:
12 = 71-59 = 59-47
3^3 = 27
4^3 = 64
5^3 = 125; 125+64+27 = 216; 216000 = 125*64*27
6^3 = 216
supplement:
Φ(25771) = 25770
σ(σ(25770)) = 216216
σ(σ(25770)) = (3^3*4^3*5^3)+(6^3)
σ(σ(25770)) = (3^3*4^3*5^3)+(3^3+4^3+5^3)
1 / g_3 =
74619.9907876555 — La2011 Table 6 La2004a
74619.9907876555 — La2011 Table 6 La2010a
74621: σ(σ(74621)) = σ(σ(Φ(25771))) = σ(σ(25770)) = 216216
74626.0277273697 — La2011 Table 5
with NASA ‘factsheet’ synodic
1.00001743356471 = 1/(1/100/(φφ/(1/11.8629550321199+1/29.4600280504908)+1/(1/11.8629550321199-1/29.4600280504908))+1/√5/√√(1/(1/11.8629550321199-1/29.4600280504908)/496))
blaring Soundgarden’s “black hole sun”
speedboat cruised at sunset
past an island up the inlet between the mountains
starboard featured nice blue pentagon design
understand how whoever came with that for the ‘factsheet’?
above used right side of illustration
x = average(Φ,φ)√√(y/496)
left side:
z = 2*average(Φ,φ)√√(u/496) = (√5)*(√√(u/496))
‘factsheet’ synodic: substitute u =
19.8602908360448 = beat(29.4600280504908,11.8629550321199)
4200.19506151223 = beat(1.00025558289712,1.00001743371442)
underscore this: try same calculation on EVERY other parameter list ever featured at the talkshop — you won’t find ANYTHING even remotely close — TUNING is the obvious interpretation
compare:
8.45735138020641 = axial(29.4600280504908,11.8629550321199)
22.1416333681812 = φφ * 8.45735138020641
42.001924204226 = 22.1416333681812 + 19.8602908360448 —- review
4200.1924204226 = 100 * 42.001924204226
a little algebra, arrive (it isn’t really curious) at a very precise estimate of their (lunisolar-biased) sidereal earth year-length
recommendation: stop the sanctions now (PLEASE: don’t delay)
Mayan Sun
review — notes shared a few years ago now connected with k & s_3
25684.9315068493 = 360*60*60/50.4576
68756.6342763388 = beat(41001.6165713381,25684.9315068493)
68756.6342763387 = 1/(1/360/60/60*50.4576-1/2^9/5^3/13/(5256.63940169013)*(44.2784629967671)*(73.0002008969005)*11*3)
41001.6165713381 = 2^9*5^3*13*(5256.63940169013)/( 44.2784629967671)/(73.0002008969005)/11/3
5125.20207141727 = 41001.6165713381 / 8
394.246313185944 = 5125.20207141727 / 13
143998.465891166 = 394.246313185944 * 365.25
NASA ‘factsheet’ synodic
carefully scrutinize 365.256 days in concert with scaling featured in last few comments
11.8631499061245 = beat(1.09207392197125,1.00001642710472)
29.4605119934568 = beat(1.03515400410678,1.00001642710472)
83.9387085475763 = beat(1.01207392197125,1.00001642710472)
164.501359353944 = beat(1.00613278576318,1.00001642710472)
68753.7838334262 = 1/(-2067/11.8631499061245+6233/29.4605119934568-2075/83.9387085475763-2075/164.501359353944)
41002.6302294426 = beat(68753.78398,25684.9315068493)
5125.32877868033 = 41002.6302294426 / 8
394.256059898487 = 5125.32877868033 / 13
144002.025877922 = 394.256059898487 * 365.25
baktun balance with Standish (1992) long-duration sidreal earth year-length
11.8632889636452 = beat(1.09207392197125,1.0000174152119)
29.4613695891215 = beat(1.03515400410678,1.0000174152119)
83.9456708028269 = beat(1.01207392197125,1.0000174152119)
164.528101664775 = beat(1.00613278576318,1.0000174152119)
5125.26068671143 = 1/(32.5/11.8632889636452-81.5/29.4613695891215+1.5/83.9456708028269+1.5/164.528101664775)
5125.26068671143 = 2/(65/11.8632889636452-163/29.4613695891215+3/83.9456708028269+3/164.528101664775)
68755.3156707909 = beat(41002.0854936914,25684.9315068493)
41002.0854936914 = 5125.26068671143 * 8
5125.26068671143 = 41002.0854936914 / 8
394.250822054725 = 5125.26068671143 / 13
144000.112755488 = 394.250822054725 * 365.25
generalized Bollinger (1952) method used to derive all of the preceding
typo near end of lunisolar 1800 comment
supplementary
68952.9911154182 = slip(1800.93537030388,0.999978616353183) — M&S unrounded
68961.1021023274 = slip(1800.93537030388,0.999978614647502) —— M&S rounded
The Real Thing
generalized Bollinger setup
NASA ‘factsheet’ “Perihelion (10^6 km)”
18.5132744565067 = beat(27.1859355652811,11.0133345026533)
9.25663722825335 = 18.5132744565067 / 2
4.62831861412668 = 18.5132744565067 / 4
15.6761007011677 = harmean(27.1859355652811,11.0133345026533)
7.83805035058385 = axial(27.1859355652811,11.0133345026533)
3.91902517529192 = 7.83805035058385 / 2
1.95951258764596 = 7.83805035058385 / 4
crossed with Standish (1992) anomalistic
11.3158491444058 = beat(15.6761007011677,6.57189983390616)
5.65792457220292 = 11.3158491444058 / 2
2.82896228610146 = 11.3158491444058 / 4
9.26121549052347 = harmean(15.6761007011677,6.57189983390616)
4.63060774526174 = axial(15.6761007011677,6.57189983390616)
2.31530387263087 = 4.63060774526174 / 2
1.15765193631543 = 4.63060774526174 / 4
hierarchy top levels
50.8673777758235 = slip(18.5132744565067,11.3158491444058)
68.039402479501 = slip(18.5132744565067,5.65792457220292)
40.616453731329 = slip(18.5132744565067,2.82896228610146)
9362.47281505814 = slip(18.5132744565067,4.63060774526174)
4681.23640752907 = slip(18.5132744565067,2.31530387263087)
2340.61820376454 = slip(18.5132744565067,1.15765193631543)
33052.6407001566 = slip(9362.47281505814,18.5132744565067)
Standish anomalistic JS
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
crossed with nasa ‘factsheet’ synodic (using Standish long-duration earth sidereal)
10.7452986346853 = beat(16.9161211952138,6.57120187976141)
130.437274099443 = slip(19.8549641949401,10.7452986346853)
451.069113778482 = slip(130.437274099443,16.9161211952138)
984.586552944021 = slip(451.069113778482,130.437274099443)
980.005077317815 = beat(984.586552944021,491.145236537217)
73500.3807988361 = 980.005077317815 * 75
36750.1903994181 = 73500.3807988361 / 2
33052.6407001566 ; / 8 / √φ = 5255.45105486596 ; / 8 / √φ = 835.629626106117
36133.4834429326 = beat(29.4474984673838,29.42351935)
36133.4519209772 = axial( 500 * 835.629626106117 , Φ * 64000 )
36133.2446397442 = axial( 500 * 835.546575435627 , Φ * 64000.2003306117 )
11.8619906635942 = axial( 250 * 835.629626106117 , 11.8627021700857 )
11.861990807677 — compare Standish sidereal
JS Seidelmann short-duration
19.8650360864628 = beat(29.4474984673838,11.8626151546089)
9.93251804323141 = 19.8650360864628 / 2
4.9662590216157 = 19.8650360864628 / 4
16.9122914926352 = harmean(29.4474984673838,11.8626151546089)
8.4561457463176 = axial(29.4474984673838,11.8626151546089)
4.2280728731588 = 8.4561457463176 / 2
2.1140364365794 = 8.4561457463176 / 4
crossed with Standish anomalistic
10.7487113950462 = beat(16.9122914926352,6.57189983390616)
5.37435569752312 = 10.7487113950462 / 2
2.68717784876156 = 10.7487113950462 / 4
9.46559190444059 = harmean(16.9122914926352,6.57189983390616)
4.73279595222029 = axial(16.9122914926352,6.57189983390616)
2.36639797611015 = 4.73279595222029 / 2
1.18319898805507 = 4.73279595222029 / 4
generalized Bollinger top-level
130.804508068333 = slip(19.8650360864628,10.7487113950462)
65.4022540341667 = slip(19.8650360864628,5.37435569752312)
50.6080139018586 = slip(19.8650360864628,2.68717784876156)
100.676696558682 = slip(19.8650360864628,4.73279595222029)
50.3383482793411 = slip(19.8650360864628,2.36639797611015)
94.2634877779342 = slip(19.8650360864628,1.18319898805507)
~ 2 * 1470 :
2940.22366441706 = slip(639.79104597475,65.4022540341667)
639.79104597475 = slip(94.2634877779342,8.4561457463176)
astronomical delight
23098.5346098618 = slip(2081.08715717028,130.804508068333) ~= 23.1 ka
2081.08715717028 = slip(130.804508068333,4.2280728731588)
concise lunisolar review
29976.553895592 = beat(179.333323110834,178.266850068779) — M&S rounded tropical
29971.9562539596 = beat(179.333487684639,178.266850068779) — M&S unrounded tropical
contains
29972.4308734593 = slip(6642.042967895,130.804508068333)
6642.042967895 = slip(50.6080139018586,16.9122914926352)
50.6080139018586 = slip(19.8650360864628,2.68717784876156)
Your foray into orbital resonance is fascinating. To even understand orbital resonance I found this video https://youtu.be/Qyn64b4LNJ0 very explanatory to me. You all may enjoy it, not for what you already know, but for the last third or so, where the video gets into converting orbital resonance into sound. Very interesting and cool.
David A – in reality there are no *exact* orbital resonances that we know of. The true resonances are synodic, i.e. based on periods when two bodies are in line with the body they’re orbiting.
However the Galilean moons of Jupiter are very close to an exact orbital resonance, but see here:
David A: reference framing & sampling/aggregation biases (not resonance) have been the more memorable exploration spices. (Look for “anomalistic periods” on the net, find little, wonder why.)
no. fancy policy
132942.038841156 = slip(2493.45557752384,50.8673777758235)
2493.45557752384 = slip(50.8673777758235,3.91902517529192)
anomalistic purpose?
132942.038841155 = beat(2361.4060221632,2320.1931882465)
2340.61820376454 = harmean(2361.4060221632,2320.1931882465)
Dow

non-Mayan
pleas
28.8 & 29.8 ka note
background
28861.8479491577 = slip(521.471474393677,65.3314842129265)
521.471474393677 = slip(93.4596178908348,4.96576827193809)
1268.08418957619 = slip(100.895781229192,19.8630730877524)
59572.1478647727 = slip(1268.08418957619,50.6802153502585) ; / 2 =
29786.0739323864
image disappeared from here
Vert
anomalistic
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
9.92748209747005 = 19.8549641949401 / 2
4.96374104873503 = 19.8549641949401 / 4
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
8.45806059760692 = axial(29.4701958106261,11.8627021700857)
4.22903029880346 = 8.45806059760692 / 2
2.11451514940173 = 8.45806059760692 / 4
cross with nodal
10.7419198566295 = beat(16.9161211952138,6.56993811757712)
5.37095992831474 = 10.7419198566295 / 2
2.68547996415737 = 10.7419198566295 / 4
9.46415641396783 = harmean(16.9161211952138,6.56993811757712)
4.73207820698391 = axial(16.9161211952138,6.56993811757712)
2.36603910349196 = 4.73207820698391 / 2
1.18301955174598 = 4.73207820698391 / 4
top level
130.937221254586 = slip(19.8549641949401,10.7419198566295)
65.4686106272931 = slip(19.8549641949401,5.37095992831474)
50.4636420418041 = slip(19.8549641949401,2.68547996415737)
–
101.392224425295 = slip(19.8549641949401,4.73207820698391)
50.6961122126475 = slip(19.8549641949401,2.36603910349196)
91.6213954766362 = slip(19.8549641949401,1.18301955174598)
so what?
323.049985568367 = slip(130.937221254586,19.8549641949401)
220.179370109776 = slip(65.4686106272931,19.8549641949401)
110.089685054889 = slip(50.4636420418041,19.8549641949401)
504.343543575558 = slip(130.937221254586,16.9161211952138)
no. doubt:
2998.18929479554 = slip(50.4636420418041,16.9161211952138)
1499.09464739777 = slip(50.4636420418041,8.45806059760692)
86900.0492950508 = slip(504.343543575558,50.4636420418041)
86900 = 11 * 25 * 316
con$hiver˚T review:

JEV nodal-anomalistic (casual intro)
nodal
320.347986973937 = slip(44.2875117414503,0.761762061330659)
320.347986973937 = slip(22.1437558707251,0.761762061330659)
23.7880850683634 = slip(11.0718779353626,0.761762061330659) ———-
160.173993486969 = slip(44.2875117414503,0.38088103066533)
160.173993486969 = slip(22.1437558707251,0.38088103066533)
160.173993486969 = slip(11.0718779353626,0.38088103066533)
99.0755539755134 = slip(44.2875117414503,0.190440515332665) ———-
80.0869967434843 = slip(22.1437558707251,0.190440515332665)
80.0869967434843 = slip(11.0718779353626,0.190440515332665)
anomalistic
575.799247511725 = slip(44.2411450188424,0.761769224080824)
575.799247511725 = slip(22.1205725094212,0.761769224080824)
23.0043337056467 = slip(11.0602862547106,0.761769224080824) ———–
287.899623755862 = slip(44.2411450188424,0.380884612040412)
287.899623755862 = slip(22.1205725094212,0.380884612040412)
287.899623755862 = slip(11.0602862547106,0.380884612040412)
143.949811877931 = slip(44.2411450188424,0.190442306020206)
143.949811877931 = slip(22.1205725094212,0.190442306020206)
143.949811877931 = slip(11.0602862547106,0.190442306020206)
reorganizing
320 = 28+163+67+43+19 (the 744 levels)
320.347986973937 = slip(44.2875117414503,0.761762061330659) — n
575.799247511725 = slip(44.2411450188424,0.761769224080824) — a
576 = 320+256 = 28+163+67+43+19 + 2^8 = 4 * 12^2
320.347986973937 = slip(22.1437558707251,0.761762061330659) — n
575.799247511725 = slip(22.1205725094212,0.761769224080824) — a
23.7880850683634 = slip(11.0718779353626,0.761762061330659) — n
23.0043337056467 = slip(11.0602862547106,0.761769224080824) — a
160.173993486969 = slip(44.2875117414503,0.38088103066533) — n
287.899623755862 = slip(44.2411450188424,0.380884612040412) — a
288 = 160+128 = 2 * 12^2
160.173993486969 = slip(22.1437558707251,0.38088103066533) — n
287.899623755862 = slip(22.1205725094212,0.380884612040412) — a
160.173993486969 = slip(11.0718779353626,0.38088103066533) — n
287.899623755862 = slip(11.0602862547106,0.380884612040412) — a
99 = 163-64 —————————————————————————————— note well
99.0755539755134 = slip(44.2875117414503,0.190440515332665) — n
143.949811877931 = slip(44.2411450188424,0.190442306020206) — a
80 = 144-64
80.0869967434843 = slip(22.1437558707251,0.190440515332665) — n
143.949811877931 = slip(22.1205725094212,0.190442306020206) — a
144 = 80+64
80.0869967434843 = slip(11.0718779353626,0.190440515332665) — n
143.949811877931 = slip(11.0602862547106,0.190442306020206) — a
144 = 59*59 – 47*71 = 12^2
Tortoise
576 = 24^2
23 = 99 – 76
“Experts” misled us severely last decade.
76 = 163 mod 24 + 67 mod 24 + 43 mod 24 + 19 mod 24 = 19 + 19 + 19 + 19
JEV nodal
417.865531943236 = slip(160.173993486969,44.2875117414503)
417.865531943179 = slip(99.0755539755134,44.2875117414503) ————
417.865531943236 = slip(80.0869967434843,44.2875117414503)
208.93276597159 = slip(99.0755539755134,22.1437558707251) ————-
208.932765971618 = slip(80.0869967434843,22.1437558707251)
compare with
JEV anomalistic
417.781912370365 = slip(49.480945018333,44.2411450188424)
208.890956185182 = slip(49.480945018333,22.1205725094212)
104.445478092591 = slip(49.480945018333,11.0602862547106)
46 = 209 – 163 = 2 * 23
σ(Φ(47))^5 – Φ(47)^5 – 47^5 = 19^5 + 43^5 + 67^5
835.563824740778 = slip(6.84967828238651,0.761769224080824)
417.781912370389 = slip(6.84967828238651,0.380884612040412)
208.890956185194 = slip(6.84967828238651,0.190442306020206)
104.445478092597 = slip(6.84967828238651,0.095221153010103)
Study carefully:
2096.44010053095 = slip(135.584676517528,44.2411450188424)
135.584676517528 = slip(44.2411450188424,1.59867106414771)
supplementary
49.480945018333 = slip(6.84967828238651,0.399667766036927)
anomalistic
835.56382473927 = 1/(-14/0.615197860179071+22/1.0000262476142+9/11.8627021700857)
nodal
835.731063859634 = 4/(-1387/0.615194395759546+2333/1.00001071395229-930/11.862499899747)
derive from:
anomalistic
1.59867106414771 = beat(1.0000262476142,0.615197860179071)
0.799335532073854 = 1.59867106414771 / 2
0.399667766036927 = 1.59867106414771 / 4
0.761769224080824 = harmean(1.0000262476142,0.615197860179071)
0.380884612040412 = axial(1.0000262476142,0.615197860179071)
0.190442306020206 = 0.380884612040412 / 2
0.095221153010103 = 0.380884612040412 / 4
0.814043420635227 = beat(11.8627021700857,0.761769224080824)
0.407021710317613 = 0.814043420635227 / 2
0.203510855158807 = 0.814043420635227 / 4
1.43160709790728 = harmean(11.8627021700857,0.761769224080824)
0.715803548953639 = axial(11.8627021700857,0.761769224080824)
0.35790177447682 = 0.715803548953639 / 2
0.17895088723841 = 0.715803548953639 / 4
44.2411450188424 = slip(1.59867106414771,0.814043420635227)
22.1205725094212 = slip(1.59867106414771,0.407021710317613)
11.0602862547106 = slip(1.59867106414771,0.203510855158807)
6.84967828238651 = slip(1.59867106414771,0.715803548953639)
3.42483914119326 = slip(1.59867106414771,0.35790177447682)
24.0670906604157 = slip(1.59867106414771,0.17895088723841)
nodal
1.59868736807262 = beat(1.00001071395229,0.615194395759546)
0.799343684036311 = 1.59868736807262 / 2
0.399671842018155 = 1.59868736807262 / 4
0.761762061330659 = harmean(1.00001071395229,0.615194395759546)
0.38088103066533 = axial(1.00001071395229,0.615194395759546)
0.190440515332665 = 0.38088103066533 / 2
0.0952202576663324 = 0.38088103066533 / 4
0.81403619360271 = beat(11.862499899747,0.761762061330659)
0.407018096801355 = 0.81403619360271 / 2
0.203509048400678 = 0.81403619360271 / 4
1.43159297613223 = harmean(11.862499899747,0.761762061330659)
0.715796488066113 = axial(11.862499899747,0.761762061330659)
0.357898244033057 = 0.715796488066113 / 2
0.178949122016528 = 0.715796488066113 / 4
44.2875117414503 = slip(1.59868736807262,0.81403619360271)
22.1437558707251 = slip(1.59868736807262,0.407018096801355)
11.0718779353626 = slip(1.59868736807262,0.203509048400678)
6.84843333335951 = slip(1.59868736807262,0.715796488066113)
3.42421666667975 = slip(1.59868736807262,0.357898244033057)
24.1324516929722 = slip(1.59868736807262,0.178949122016528)
sh: most replayed time index? 209
99476.8446931352 = beat(130901699.437495,99401.3061146969)
“…wwwo˚k T˚he lline like Can. edge? yep…”
Call off ice$UNhhowe???0vertThe
Horizon$1929.72222222222 (in sidereal hindsight NA!SA)
99401.3061147312 = 2/(1/11.8619848807702+1/29.4571542179636-1/11.8627021700857-1/29.4701958106261)
Sidellmann (1992) tropical wwwithconvert$yen
25761.5669315114 = beat(1.00001743371442,0.999978616353183) give$ :
99438.5571830642 = 2/(1/11.8619843895747+1/29.4571637875065-1/11.8627021700857-1/29.4701958106261)
11.8619855226385 = beat(25746.362539063,11.8565229295003)
29.4571824642891 = beat(25746.362539063,29.4235181382615)
223486.379079769 = beat(11.8626151546089,11.8619855226385)
89574.6192358693 = beat(29.4571824642891,29.4474984673838)
63945.0695493213 = axial(223486.379079769,89574.6192358693)
99438.3330129135 = harmean(111743.189539885,89574.6192358693)
llunisolr biasXbias
11.8619844613515 = 1/(-1/0.999978616353183+1/1.00001741273101-1/27500000+1/11.8565229295003)
29.4571759194281 = 1/(-1/0.999978616353183+1/1.00001741273101-1/27500000+1/29.4235181382615)
223110.291681529 = beat(11.8626151546089,11.8619844613515)
89635.1786377776 = beat(29.457175919428,29.4474984673838)
63945.0695493126 = axial(223110.291681529,89635.1786377776)
99401.0566990933 = harmean(111555.145840765,89635.1786377776)
catchSSTand!sh(1992)fi$[hh]calefidereal
99476.8155050703 = 2/(1/11.861990807677+1/29.4571309198874-1/11.8627021700857-1/29.4701958106261)
1.00001743390371 = (1-(1/σ(209))^1)^(0/1)/(1-(1/σ(209))^2)^(2/2)/(1-(1/σ(209))^3)^(3/3)/(1-(1/σ(209))^4)^(2/4)/(1-(1/σ(209))^5)^(5/5)/(1-(1/σ(209))^6)^(1/6)
25761.4413131157 = beat(1.00001743390371,0.999978616353183)
11.8619833699953 = beat(25761.4413131157,11.8565239747501)
29.4571633444961 = beat(25761.4413131157,29.4235187441307)
16.9132428669975 = harmean(29.4571633444961,11.8619833699953)
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
99400.2228512541 = beat(16.9161211952138,16.9132428669975)
$0 few Can˚T[hh]ellweather MI = Thor math f(ll0˚CDownTh(y/n)c$yen)$T˚ache99.9999per(inno$)centCOllatorwell
˚T˚win blew
˚T˚won Vert “on”
“ain’t no cause”
5256.07266843706 = 4/(1/11.8627021700857-6/84.0331316671926-2/164.793624044745) — anomalistic
“just abattery 4/hire” – easyDC “load up Eur. Can. on”
ain’t Talkin’ (Down!)
“more than N’folk song”
2432.13579731858 = 2/(-1/29.4701958106261+7/84.0331316671926-8/164.793624044745)
“$hh!keep” sayin’: Eur. IT
1216.06789865929 = 1/(-1/29.4701958106261+7/84.0331316671926-8/164.793624044745) — anomalistic
“give allITll˚K˚!˚C˚K˚ withh eur. fine”
608.033949329645 = 1/(-2/29.4701958106261+14/84.0331316671926-16/164.793624044745)
“V!$hh!UShypnoCsis”
“$hh!achhe earn IT BRI˚C wall”
‘factsheet’ 41k ace:
“Wrong_2Won˚T!mowwR˚Than a foe 11˚K s_on_g” – metR˚Ck
41000.1976938051 = harmean(101554.605384649,25684.9315068493)
406218.421537452 = 16/(-7/11.8619822039699+5/29.4571389459274+7/11.8627021700857-5/29.4701958106261)
101554.605384363 = 4/(-7/11.8619822039699+5/29.4571389459274+7/11.8627021700857-5/29.4701958106261)
buy us anomalistic sam pull period
NA!SAhherdin=mowwR0˚CO2revverse
68760.6246393283 = beat(41000.1976938051,25684.9315068493)
C˚0llDCllear
25684.888118931 = beat(25808.1319319395,12873.1812695315)
25808.1319319395 = 1/(-1/83.7474058863792+2/163.723203285421+1/84.0331316671926-2/164.793624044745)
412930.110911032 = 16/(-1/83.7474058863792+2/163.723203285421+1/84.0331316671926-2/164.793624044745)
JEV nodal setup listed here
That also leads to:
702.588969079652 = slip(6.84843333335951,0.761762061330659)
351.294484539826 = slip(6.84843333335951,0.38088103066533)
175.647242269913 = slip(6.84843333335951,0.190440515332665)
87.8236211349565 = slip(6.84843333335951,0.0952202576663324)
alternately:
13.696866666719 = slip(1.59868736807262,1.43159297613223)
702.588969080693 = slip(13.696866666719,0.761762061330659)
351.294484540347 = slip(13.696866666719,0.38088103066533)
175.647242270173 = slip(13.696866666719,0.190440515332665)
87.8236211350867 = slip(13.696866666719,0.0952202576663324)
Why the systematically-structured sampling bias in the short-duration models was not acknowledged early in “climate discussion” is the crUShin’mystery.
using this
345.720408200766 = slip(130.937221254586,4.96374104873503)
345.720408200718 = 1/(26/11.862499899747+52/29.4511026866654-61/11.8627021700857+35/29.4701958106261)
345 review
figure 7hherd dog in0˚Kin awe “what ruff?”
691.440816401436 = 1/(13/11.862499899747+26/29.4511026866654-30.5/11.8627021700857+17.5/29.4701958106261)
691.440816401531 = slip(130.937221254586,9.92748209747005)
using this
2998.18929479478 = 2/(24/11.862499899747+48/29.4511026866654-55/11.8627021700857+29/29.4701958106261)
1499.09464739739 = 1/(24/11.862499899747+48/29.4511026866654-55/11.8627021700857+29/29.4701958106261)
supplementary notes
345.720408200718 = 1/(26/11.862499899747+52/29.4511026866654-61/11.8627021700857+35/29.4701958106261)
691.440816401436 = 2/(26/11.862499899747+52/29.4511026866654-61/11.8627021700857+35/29.4701958106261)
691.440816401528 = slip(323.049985568367,130.937221254586)
691.440816401528 = slip(220.179370109776,130.937221254586)
691.44081640155 = slip(130.937221254586,110.089685054889)
345.720408200775 = slip(110.089685054889,65.4686106272931)
345.720408200766 = slip(130.937221254586,4.96374104873503)
691.440816401531 = slip(130.937221254586,9.92748209747005)
323.049985568367 = slip(130.937221254586,19.8549641949401)
504.343543575558 = slip(130.937221254586,16.9161211952138)
504.343543575558 = slip(65.4686106272931,16.9161211952138)
220.179370109776 = slip(65.4686106272931,19.8549641949401)
220.128528176077 = slip(91.6213954766362,16.9161211952138)
323 = 196883 – 196560
504 = 220 + s(220) ; 220 = s(s(220))
504.343543575571 = 2/(-16/11.862499899747-32/29.4511026866654+39/11.8627021700857-25/29.4701958106261)
220.179370109781 = 1/(6/11.862499899747+12/29.4511026866654-14/11.8627021700857+8/29.4701958106261)
323.049985568356 = 2/(-14/11.862499899747-28/29.4511026866654+33/11.8627021700857-19/29.4701958106261)
distinction (from 220.17937010978)
220.128528176035 = 2/(40/11.862499899747+80/29.4511026866654-149/11.8627021700857+191/29.4701958106261)
AmereR0˚CO$pereRllX!
“Perihelion (10^6 km)”
58.0330166444241 = 1/(1/11.0133345026533-2/27.1859355652811)
152.138222152323 = 1/(1/78.4417377748537-1/161.934271741915)
/
6.08396577991655 = 1/(1/11.0133345026533+2/27.1859355652811)
~25 = 5^2 = 317-163-67-43-19
bias SAM+pu+ll+in’SSTop! goes withhout sayUN:JS˚T chll ouT˚
Table 8 Vote$$well
“BR˚tmI Pence$$sol.
‘Gov.ME$$sum˚Thhun˚T00‘wwrite Don”
e+v=47+71=2*59
e-v=58*2^3
e=58*2^3+v
“$wwheat $wwheat Wall Dough”
58*2^3+v+v=47+71
2v=47+71-58*2^3
e-173=47+71
e=47+71+173
VA’n’hale unhhothh˚TeaChR “NOAA bout this $Ch˚˚ll”
160.17399348638 = 1/(-173/0.615194395759546+291/1.00001071395229-116/11.862499899747)
287.899623750069 = 1/(-173/0.615197860179071+291/1.0000262476142-116/11.8627021700857)
D!monde Ave.: “$IT Down Wall Dough”
M!55 UNllink (well flower)
lofty weather dog’n’dig note orrery:
132891.64579987 = 2/(1/29.4571309198874-1/29.4701958106261)
2-PEace˚TypoV How$ensoch!ustech
25808 = Σs(5090) – 7*55
25808 = Σs(5090) – 7*(28^2-27^2)
25808 = Σs(5090) – 7*(1^2+2^2+3^2+4^2+5^2)
25808 = Σs(5090) – 7*(378-323)
25808 = Σs(5090) – 7*(378+196560-196883)
25808 = Σs(5090) – 7*11*√(317-163-67-43-19)
5 = √(317-163-67-43-19)
55 = 11*√(317-163-67-43-19)
378 = 323+11*√(317-163-67-43-19)
notion ignore˚Folk˚CUS$
4266 (or 4267) years
curiosity noted before
NASA Horizons 1929.72222222222 sidereal
60.9469869005405 = slip(29.4571542179636,11.8619848807702) ; * 70 =
4266.28908303783
standish sidereal long-duration
4267.83999767789 = slip(164.786005834669,84.01495797691)
standish sidereal SHORT-duration
4266.98089346112 = slip(164.790305314929,84.0175261973943)
4266.96721287228 = 1/(-10/11.8627021700857-10/29.4701958106261+10/11.862499899747+10/29.4511026866654)
Standish anomalistic with nodal — insight from CAREFUL study of “Chandler Diversity”
same line of inquiry clarifies:
173927.260141636 = 1/(-4/11.8627021700857+4/11.862499899747)
173901.37537739 = 1 / g_2 —– La(2004a,2010a)average
automating discovery of 173 (or 174) ka (see preceding comment)
anomalistic-nodal combos arising with generalized Bollinger
4.73181582715489 = axial(16.912768715208,6.56993811757712)
4.73207820698391 = axial(16.9161211952138,6.56993811757712)
4.73283332391597 = axial(16.912768715208,6.57189983390616)
4.73309581660092 = axial(16.9161211952138,6.57189983390616)
quarter-beats
4374.2817110478 = beat(1.18327395415023,1.18295395678872)
5502.44887404215 = beat(1.18320833097899,1.18295395678872)
5502.44887404534 = beat(1.18327395415023,1.18301955174598)
7414.79116630378 = beat(1.18320833097899,1.18301955174598)
21334.8360643294 = beat(1.18301955174598,1.18295395678872)
21334.8360643774 = beat(1.18327395415023,1.18320833097899)
21334.8360643294 = slip(5502.44887404534,4374.2817110478)
21334.8360643774 = slip(7414.79116630378,5502.44887404534)
24317.7838264046 = slip(7414.79116630378,4374.2817110478)
173927.260144754 = slip(21334.8360643774,4374.2817110478)
173927.260141567 = slip(21334.8360643774,5502.44887404534)
173927.260141568 = slip(21334.8360643774,7414.79116630378)
173927.260138382 = slip(24317.7838264046,21334.8360643774)
alternately – via other side
10.7419198566295 = beat(16.9161211952138,6.56993811757712)
10.7432721445968 = beat(16.912768715208,6.56993811757712)
10.7471650296459 = beat(16.9161211952138,6.57189983390616)
10.7485186386365 = beat(16.912768715208,6.57189983390616)
1/4 beats
4374.28171104601 = beat(2.68712965965912,2.68547996415737)
5502.44887404212 = beat(2.68679125741149,2.68547996415737)
5502.44887404128 = beat(2.68712965965912,2.68581803614919)
7414.79116630151 = beat(2.68679125741149,2.68581803614919)
21334.8360643478 = beat(2.68581803614919,2.68547996415737)
21334.8360643352 = beat(2.68712965965912,2.68679125741149)
another way to look at it – building blocks
pure
1.18295395678872 = 1/(+6/11.862499899747+10/29.4511026866654)
1.18327395415023 = 1/(6/11.8627021700857+10/29.4701958106261)
crosses
1.18301955174598 = 1/(2/11.8627021700857+2/29.4701958106261+4/11.862499899747+8/29.4511026866654)
1.18320833097899 = 1/(4/11.8627021700857+8/29.4701958106261+2/11.862499899747+2/29.4511026866654)
simple subtraction
4374.28171104854 = 1/(-6/11.8627021700857-10/29.4701958106261+6/11.862499899747+10/29.4511026866654)
5502.44887404102 = 1/(-4/11.8627021700857-8/29.4701958106261+4/11.862499899747+8/29.4511026866654)
7414.7911662994 = 1/(-2/11.8627021700857-6/29.4701958106261+2/11.862499899747+6/29.4511026866654)
21334.8360643551 = 1/(-2/11.8627021700857-2/29.4701958106261+2/11.862499899747+2/29.4511026866654)
note with care:
4266.96721287228 = 1/(-10/11.8627021700857-10/29.4701958106261+10/11.862499899747+10/29.4511026866654)
arises in
173927.260144754 = slip(21334.8360643774,4374.2817110478)
173927.260141636 = 1/(-4/11.8627021700857+4/11.862499899747)
so that clarifies another source of systematic bias in the short-duration models that attracted attention long ago but remained mysterious at the time (no longer so now)
“Does A NY buddy no. how the SSTory really goes?”
1.59868960462765 = beat(1.0000174152119,0.615197263077614)
0.799344802313826 = 1.59868960462765 / 2
0.814043321555892 = beat(11.861990807677,0.761766203759125)
0.407021660777946 = 0.814043321555892 / 2
0.203510830388973 = 0.814043321555892 / 4
44.2698538014441 = slip(1.59868960462765,0.814043321555892)
“0=range(C+R)-USh!…”
22.1349269007221 = slip(1.59868960462765,0.407021660777946)
“…˚Take IT away buoys”
11.067463450361 = slip(1.59868960462765,0.203510830388973)
143.424905399078 = slip(44.2698538014441,1.59868960462765)
143.424905399078 = slip(22.1349269007221,1.59868960462765)
143.424905399078 = slip(11.067463450361,1.59868960462765)
71.7124526995389 = slip(22.1349269007221,0.799344802313826)
71.7124526995389 = slip(11.067463450361,0.799344802313826)
0.71+071 = 1*71*(101/100)
1.42+142 = 2*71*(101/100)
hhear dog Un?
19.8589050137632 = beat(29.4571309198874,11.861990807677)
6.57038184300286 = axial(14.7285654599437,11.861990807677)
4.7320832829358 = axial(16.9132450828034,6.57038184300286)
100.985205171956 = slip(19.8589050137632,4.7320832829358)
1186.18276371796 = slip(100.985205171956,19.8589050137632) — ADJ0! (“well…B a dog”)
3455.60863545854 = slip(100.985205171956,16.9132450828034) ~= 3456
1727.80431772927 = slip(100.985205171956,8.4566225414017)
Some (naively enough) believe expression reflects belief.
–
casually exploring (just a little bit at a time) where some of the narratives came from
Jupiter-Neptune Standish (1992) sidereal
12.7821002221242 = beat(164.786005834669,11.861990807677)
6.39105011106212 = 12.7821002221242 / 2
3.19552505553106 = 12.7821002221242 / 4
22.1309057968232 = harmean(164.786005834669,11.861990807677)
11.0654528984116 = axial(164.786005834669,11.861990807677)
5.53272644920579 = 11.0654528984116 / 2
2.7663632246029 = 11.0654528984116 / 4
22.2270434142659 = beat(5116.67146563023,22.1309057968232)
11.113521707133 = 22.2270434142659 / 2
5.55676085356648 = 22.2270434142659 / 4
44.0711924742534 = harmean(5116.67146563023,22.1309057968232)
22.0355962371267 = axial(5116.67146563023,22.1309057968232)
11.0177981185634 = 22.0355962371267 / 2
5.50889905928168 = 22.0355962371267 / 4
85.1348300394896 = slip(22.2270434142659,12.7821002221242)
85.1348300394896 = slip(12.7821002221242,11.113521707133)
42.5674150197448 = slip(12.7821002221242,5.55676085356648)
79.8222705138594 = slip(22.0355962371267,12.7821002221242)
79.8222705138594 = slip(12.7821002221242,11.0177981185634)
39.9111352569297 = slip(12.7821002221242,5.50889905928168)
note well:
555.982859223482 = slip(85.1348300394896,22.1309057968232)
556 = 378 + 178
378.378118042886 = slip(85.1348300394896,2.7663632246029)
378.378 = 0.378+378 = 378*(1001/1000)
326.007703249488 = slip(79.8222705138594,12.7821002221242)
163.003851624744 = slip(79.8222705138594,6.39105011106212)
supplementary
1524.87927002403 = slip(164.786005834669,11.861990807677)
5116.67146563023 = slip(1524.87927002403,12.7821002221242)
1524.87927002403 = 1/(-1/11.861990807677+14/164.786005834669)
5116.67146560344 = 1/(120/11.861990807677-1667/164.786005834669)
378.378118034515 = 1/(-7444/11.861990807677+103412/164.786005834669)
326.007703249529 = 1/(-1439/11.861990807677+19991/164.786005834669)
163.003851624764 = 1/(-2878/11.861990807677+39982/164.786005834669)
review
200 = 378-178
323 = 196883-196560
0 = 1^2+2^2+3^2+4^2+5^2-28^2+27^2
55 = 1^2+2^2+3^2+4^2+5^2 = 28^2-27^2 = 378-196883+196560
110 = 1^2+2^2+3^2+4^2+5^2+28^2-27^2
220 = s(s(220))
178 = 2+3+5+7+11+13+17+19+23+31+47
378 = 2+3+5+7+11+13+17+19+23+29+31+41+47+59+71
556 = 178+378
178+378*3-(196883-196560)*2 = 178+378+(28^2-27^2)+(5^2+4^2+3^2+2^2+1^2)
recall
70^2 = 24^2+23^2+22^2+…+5^2+4^2+3^2+2^2+1^2
‘n’so (apparently) an attempt to “contain” was MAID
maybe some would be persuaded less by objective (and uninteresting) numerical facts than by superstition (about prescribed nicknames — e.g. “Beast”, “Monster”, “Amicable”)
378±55
±
178±55
Only Standish (1992) sidereal ties in “the superstitious imagination”.
EV
1.59868960462765 = beat(1.0000174152119,0.615197263077614)
0.761766203759125 = harmean(1.0000174152119,0.615197263077614)
SEV
0.781988555171283 = beat(29.4571309198874,0.761766203759125)
36.0146108724673 = slip(1.59868960462765,0.781988555171283)
36.014610872468 = 1/(-1.5/0.615197263077614+2.5/1.0000174152119-1/29.4571309198874)
UEV
0.768736359939692 = beat(84.01495797691,0.761766203759125) ; / 2 = 0.384368179969846
10.0378419482516 = slip(1.59868960462765,0.384368179969846)
36.0045726235707 = slip(10.0378419482516,1.59868960462765)
36.0045726235671 = 1/(19/0.615197263077614-31/1.0000174152119+12/84.01495797691)
NEV
0.765304020794554 = beat(164.786005834669,0.761766203759125)
17.9708503715071 = slip(1.59868960462765,0.765304020794554); * 2 = 35.9417007430143
35.9417007430146 = 2/(-1.5/0.615197263077614+2.5/1.0000174152119-1/164.786005834669)
adjustin’ wonder Standish (1992)
sidereal in some hindsight to 163
quick note on anomalistic “110.5”
1.59867106414771 = beat(1.0000262476142,0.615197860179071) ; / 4 = 0.399667766036927
0.761769224080824 = harmean(1.0000262476142,0.615197860179071)
0.715803548953639 = axial(11.8627021700857,0.761769224080824) ; / 4 = 0.17895088723841
24.0670906604157 = slip(1.59867106414771,0.17895088723841)
442.12002147416 = slip(24.0670906604157,1.59867106414771)
110.53000536854 = slip(24.0670906604157,0.399667766036927)
110.53000536789 = 1/(-416/0.615197860179071+656/1.0000262476142+240/11.8627021700857)
interpretive note
6.84967828238651 = slip(1.59867106414771,0.715803548953639)
24.0670906604158 = slip(6.84967828238651,1.59867106414771)
11.8627021700857 = harmean(44.2411450188424,6.84967828238651)
also note
23.0043337056467 = slip(11.0602862547106,0.761769224080824)
“wwould
$11 go Doww?
Non! ‘U in?’ N/A the 8*R”U 0˚TAno.morsetllin’US
19.8630730877524 = beat(29.4511026866654,11.862499899747)
16.912768715208 = harmean(29.4511026866654,11.862499899747)
6.56993811757712 = axial( 29.4511026866654 / 2 , 11.862499899747 )
4.73181582715489 = axial(16.912768715208,6.56993811757712) ; / 2 = 2.36590791357745
$isle llowe
sci. in$$wwhen?
50.2176861731761 = slip(19.8630730877524,2.36590791357745)
890.599481124359 = slip(50.2176861731761,9.93153654387618)
1983.88441752422 = slip(890.599481124359,65.7216461925253) ~= 1984 -well + N/A T = 0˚ NY
“(!w)SST her(dup)(ll)c(!)[teach0r(45)]ty”
1983.88441752493 = slip(815.681453466242,65.7216461925253) ~= 1984
815.681453466242 = slip(100.435372346352,8.456384357604)
100.435372346352 = slip(19.8630730877524,4.73181582715489)
“The X ai br(!)” (tie mmminD-UK$won10)
6.56993811757712 = axial( 29.4511026866654 / 2 , 11.862499899747 )
65.7216461925253 = slip(30.5062369251788,19.8630730877524)
61.0124738503575 = slip(29.4511026866654,11.862499899747) ; / 2 = 30.5062369251788
851.495746676794 = slip(61.0124738503575,19.8630730877524) ——- point
851.495746676803 = slip(19.8630730877524,6.56993811757712) ; / 2 = 425.747873338402
851.495746676791 = harmean(890.599481124359,815.681453466242) —- of clarification
9696.53769497082 = beat(890.599481124359,815.681453466242)
/ 96 + 378 + 178 ; / 10 ; / 10
6464.35846333019 = slip(851.495746676803,19.8630730877524)
6464.35846332961 = slip(980.671364041803,851.495746676794)
/ 64 + 378 + 178 ; / 10 ; / 10
980.671364041803 = slip(425.747873338401,19.8630730877524)
1799.77042668346 = slip(851.495746676803,4.96576827193809)
576.095410986295 = slip(131.443292385051,16.912768715208)
576.095410986304 = slip(65.7216461925253,16.912768715208)
576 = 24^2
1504.77950448739 = slip(576.095410986304,131.443292385051)
851.495746676802 = harmean(980.671364041803,752.389752243925)
6464.35846333058 = slip(851.495746676794,752.389752243925)
“sh!tar$ PR10 in T = 00˚Knight$ guy”
PRimITve(mm)y˚ThiCOrreryUN˚Tru()pll$
1 = X1^2
1 = X1 ———————– err pla in$
3 = 2*X1+1
4 = 2*X1+2*X1^2
5 = 2*X1+2*X1^2+1
9 = 3^2
16 = 4^2
25 = 5^2
0 = 25-16-9
145 = 3^4+4^3
29 = (3^4+4^3)/5
“Other examples of power mean numbers n such that some power mean of the divisors of n is an integer are the RMS numbers A140480.”
“RMS numbers: numbers n such that root mean square of divisors of n is an integer.”
“1, 7, 41, 239, 287, 1673, ”
1, 5, 29, 169, 145, 845
Back to the old nut.
See https://thatsmaths.com/2019/12/12/the-intermediate-axis-theorem/
According to this, Iz the axial pole, is greater than Ix, Iy (Ix=Iy). But when can Ix (=the axis in line with the planets conjunction) due to geoid distortion, be greater than Iz, where then Iy<Iz<Ix. That is, Iz becomes the intermediate axis.
“The Earth [weather whole$sum or piecewhy$???] is rotating about the axis with largest moment of inertia and smallest kinetic energy, so no catastrophic overturn is likely any time soon.” -DO!ugh!
“CO
up D
R eelly”
4 = X2^2
2 = X2
5 = 2*X2+1
12 = 2*X2+2*X2^2
13 = 2*X2+2*X2^2+1
25 = 5^2
144 = 12^2
169 = 13^2
0 = 169-144-25
9 = X3^2
3 = X3
7 = 2*X3+1
24 = 2*X3+2*X3^2
25 = 2*X3+2*X3^2+1
49 = 7^2
576 = 24^2
625 = 25^2
0 = 625-576-49
432 = 576-144
25 = X5^2
5 = X5
11 = 2*X5+1
60 = 2*X5+2*X5^2
61 = 2*X5+2*X5^2+1
121 = 11^2
3600 = 60^2
3721 = 61^2
0 = 3721-3600-121
36 = X6^2
6 = X6
13 = 2*X6+1
84 = 2*X6+2*X6^2
85 = 2*X6+2*X6^2+1
169 = 13^2
7056 = 84^2
7225 = 85^2
0 = 7225-7056-169
3456 = 7056-3600
“USA(mm)[R](!)sh(!)
(mm)hhi(!)T˚(mou)”
216 = average(-(12^2),(24^2))
hey R(!)ch IT $not: weather˚Table 3456/432
tsibxxrsolleurprocseapayyuanat(1)0sh(Un)
$$˚Tratemi$$dupe ll!c ITe^he
576 = X24^2
24 = X24
49 = 2*X24+1
1200 = 2*X24+2*X24^2
1201 = 2*X24+2*X24^2+1
2401 = 49^2
1440000 = 1200^2
1442401 = 1201^2
0 = 1442401-1440000-2401
Without long-lasting, good (& willing) leaders,
short-lasting bad puppet$(WHO Alliez don˚russT)R-sstrungllthruD-vll0id.
625 = X25^2
25 = X25
51 = 2*X25+1
1300 = 2*X25+2*X25^2
1301 = 2*X25+2*X25^2+1
2601 = 51^2
1690000 = 1300^2
1692601 = 1301^2
0 = 1692601-1690000-2601
200 = 2601-2401 = 378 – 178
C ll0˚C nos… = isle owe sci. B ein
soll(!)’ZZdeep(!p)V≡5(!MM)T˚hhP0RP(5!30)
IT$hh&llIERS$T[˚]A(!)Un$ (b0.b0b) ~=
909.091872159363 = harmean(936.563824740778,883.185646071486)
Don˚T russhh(c)yaWWeather(W)P0RP(W)
anomalistic ITCZwrite tooknow the poor P.S.
Ruse “a rich(!)
white now” make in pla(!)n
COg node of moon0Rwwwllf a(!)r
0.0740045002653102 = axial(11.0602862547106,0.0745030006844627)
27.0301437219046 = 365.25 * 0.0740045002653102
˚Knew GBhhouRuse well make’in fine’weather feign moon$myth˚Trus˚T
c(ll)a(!$)f(d)h(!) “a w(!)sh w rite no. w” hale?(!ll!m)a($www)ITCZ(mmm)rite[2˚K]now
(od)r(mm.0u$nd)weatherIT$a(!)TSI($un11)
4724
=
70^2+ΣΦ(323)
–
24^2+Σφ(323)
nodal confounding with stackplot convention
0.0740050186809015 = axial(11.0718779353626,0.0745030006844627)
0.0739217800064733 = axial(65.7216461925254,0.0740050186809015)
27 ~= 26.9999301473644 = 365.25 * 0.0739217800064733
5256
=
70^2+ΣΦ(323)
–
44+Σφ(323)
5256
=
70^2+ΣΦ(323)
–
(σ^2)(22)
5256 = 73 * 72
2320 = (4*73)^2 – (4*72)^2
2320 = (19+43+67+163)^2 – (24^2/2)^2
21316 = 4*73^2
292 = 4*73
21315 = 4*73^2-1
21317 = 4*73^2+1
85264 = 292^2
454329225 = 21315^2
454414489 = 21317^2
0 = 454414489-454329225-85264
—————————————-
20736 = 4*72^2
288 = 4*72
20735 = 4*72^2-1
20737 = 4*72^2+1
82944 = 288^2
429940225 = 20735^2
430023169 = 20737^2
0 = 430023169-429940225-82944
adjacent PPTs
image bottom ray
2320 = average(1184,3456)
7920 = 2*(3456+504) ; 504 = 220+284 ; s(284) = 220
5256 = 7920-2400-240-24
tip of iceberg
3456 = 126150-122694
1728 = average(126150,-122694)
—————————————-
20164 = 4*71^2
284 = 4*71
20163 = 4*71^2-1
20165 = 4*71^2+1
80656 = 284^2
406546569 = 20163^2
406627225 = 20165^2
0 = 406627225-406546569-80656
—————————————-
right-triangle
2863146 = 284*20163 / 2
2985840 = 288*20735 / 2
3111990 = 292*21315 / 2
area = base*height / 2
122694 = 2985840-2863146
126150 = 3111990-2985840
double-difference ties in amicably
consider: least-squares estimation, assumptions (measurement methods included)
near-isosceles? special case of previously noted generalizations
worthwhile to slowly mix review into pythagorean context
as before: selective presentation only, as noteworthy details are grossly voluminous
323 = 196883-196560 ; σ(323) = average(-163,883)
4724 = 70^2+ΣΦ(323)–24^2-Σφ(323) = σ(4723)
2401 = 49^2 = 7^2^2
4724 = 70^2-24^2+s(7^2^2)
2362 = average(-(24^2),70^2)+(378-178)
4670 = 99^2-70^2-24^2+345
test comment
11.0602862547106
22.1205725094212
44.2411450188424
test comment (continued)
3 20 119 696
4 21 120 697
5 29 169 985
9 400 14161 484416
16 441 14400 485809
25 841 28561 970225
Pell PPT 7=3+4; 41=20+21; 239=119+120
RMS nos. 1, 7, 41, 239, 287=7*41, 1673=7*239, 9799=41*239, 68593=7*41*239
12 = 3+4+5 = perimeter
70 = 20+21+29 ; 58 = 70-12 adjacent perimeter difference
408 = 119+120+169 ; 490 = 12+70+408
210 = 20*21 / 2 = 7# primorial
140 = 210-70 = 169-29 ; h(140) = 5 = h(496) ; 140 = harmonic divisor no.
99 = 119-20 = 120-21
99^2 = 9801
9799: 1,41,239,9799
4901 = √average(1^2,41^2,239^2,9799^2)
4900 = 70^2
7 = √(average(-1,√9801)) ; m = 7^2
504 = 220+s(220)
s(2401) = ΣΦ(323)+Σφ(323) = 504-104
review
378 = average(average(220,284),average(220+284))
178 = average(average(220,284),average(220+284)) – average(-104,220+284)
200 = average(-104,220+284)
400 = 504 – 104
104 = 2*(378+178-504)
also 577 = 697-120 = 985-169 = 400+177 ; 177 = 47+59+71 (top 3 M)
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
11 121
12 144
13 169
14 196
15 225
16 256
17 289
18 324
19 361
20 400
21 441
22 484
23 529
24 576
select (contiguous) square sums
1…7: 140
2…4: 29 = 145 / 5 = (3^4+4^3) / 5
8…9: 145 = 3^4+4^3
8…10: 245 = half perimeter of 1st 3 Pell PPTs = 490/2 = (12+70+408)/2
amicable
2…9: 284 = s(220)
5…15: 1210 = s(1184) ; 400 = 5^2^2 – 15^2
M
7…9: 194
7…10: 294 = σ(194)
casual, meandering scenic route
with sociable review:
Σδ(378) = 752 = 1504 / 2
Σδ(752) = 894
Σδ(894) = 902
Σδ(902) = 894
Σδ(894) = 902
Σδ(902) = 894 = 2 * 447 (405ka near-isosceles)
clarification 553
4724 = 4901-177
(attest comment (was) caught in the filter)
4724 = 99^2-70^2-71-59-47
2362 = average(99^2,-(70^2+47+59+71))
4724 = 2*(70^2-23^2-22^2-21^2-20^2-19^2-323)
2362 = 70^2-23^2-22^2-21^2-(20^2+323)-19^2
weather allies or all lies AB?
2362 = 24^2+18^2+17^2+16^2+15^2+14^2+13^2+12^2+11^2+10^2+9^2+8^2+7^2+6^2+5^2+4^2+3^2+2^2+1^2-323
2362 = 99^2-70^2-23^2-22^2-21^2-20^2-19^2-18^2
2362 = 99^2-2*70^2+24^2+17^2+16^2+15^2+14^2+13^2+12^2+11^2+10^2+9^2+8^2+7^2+6^2+5^2+4^2+3^2+2^2+1^2
323 = 196883 – 196560
s(323)=37, 684, 685 ; ^2: 1369+467856=469225
Such clean “answers” actually raise questions about measurement and estimation methods. The “leadership” failed catastrophically. Trump: OUT! NOW!
herdiamondave “BR˚™I Pence sol”
7 ; 7^2 = 49
2*7+1 ; 2*(7+49) ; 2*56+1 ;; ^2
15 112 113 ; 240 = 15+112+113
225 12544 12769 ; 225 = 12769-12544 = 112+113
240 = perimeter
σ(240) = 744
s(240) = 504 = 220+284
s(225) = 178
σ(225) = 403
Bye Don
75 5625 151 11400 11401 0= -22801 -129960000 +129982801
76 5776 153 11704 11705 0= -23409 -136983616 +137007025
76 D˚Tales
76 ; 76^2 = 5776
76*2+1 ; 2*(76+76^2) ; 2*(76+76^2)+1
153 11704 11705 ; ^2 =
23409 136983616 137007025
change from previous triangle in series:
304 304 0 608
153 = sum of non163 Heegner nos. = 316-163
s(304) = 316 = sum of Heegner nos. (incl. 163)
s(608) = 652 ; s(652) = 496 ; s(496) = 496
time 304
“WHO ami 2 D[˚˚]agree?
T˚Ravell the www urll
DandD the 7˚˚CCCCCCC
EVorrery buddy’
s(ll˚˚K)in 4*something” 316 index
76 = 163 mod 24 + 67 mod 24 + 43 mod 24 + 19 mod 24 = 19 + 19 + 19 + 19
at least-squares imagination (not forthcoming by dawn)
The obvious problem that quickly becomes eminently clear with PPTs is the sheer volume of simple sporadic group examples. We could (simply enough) be left giving (nearly countless) examples for decades.
test comment (supplementary) 5pelltaxicab
12 = 3+4+5 = perimeter
70 = 20+21+29
408 = 119+120+169 ; 490 = 12+70+408
average perimeter of adjacent PPTs in series:
41 = average(12,70)
239 = average(70,408)
9799 = average(12,70)*average(70,408) = 41*239
Inclusive Translation (heard well by 194 message interpreters)
generalization: “power mean numbers n such that some power mean of the divisors of n is an integer” (quote from OEIS A001599)
feature of least-squares estimation:
RMS = root mean square
RMS nos. relations (e.g. 9799 from A140480) with
Pell PPTs (along 45˚)
and the other near-isosceles triangles with 0˚ & 90˚ limits (series relating to one another 1:1)
0˚
50: 200 9999 10001
9799 = 9999-200
9801 = 10001-200
corresponds with
90˚
49: 99 4900 4901
50: 101 5100 5101
9801 = 99^2
200 = 5100-4900 = 5101-4901
exploring (hierarchically-nested) integer scale, first note
23: 47 1104 1105
24: 49 1200 1201
25: 51 1300 1301
200 = 51^2 – 49^2
2450 = 49+1200+1201
194 = 2450-(47+1104+1105)
areas
25: 33150 = 51*1300/2
24: 29400 = 49*1200/2
23: 25944 = 47*1104/2
differences
3456 = 29400-25944
3750 = 33150-29400
the double-difference is subtle:
294 = 3750-3456 = σ(194)
clarification
“The RMS values (A141812) of prime RMS numbers [A140480] are prime Pell numbers (A000129) with an odd index.”
almost-isosceles PPTs
=
If a, b, c are the sides of this type of primitive Pythagorean triple (PPT) then the solution to the Pell equation is given by the recursive formula
a(n) = 6*a(n−1) − a(n−2) + 2
with a(1) = 3 & a(2) = 20
b(n) = 6*b(n−1) − b(n−2) − 2
with b(1) = 4 & b(2) = 21
c(n) = 6*c(n−1) − c(n−2)
with c(1) = 5 & c(2) = 29
=
n: a(n) b(n) c(n) perimeter=a(n)+b(n)+c(n)
1: 3 4 5 12
2: 20 21 29 70
3: 119 120 169 408
4: 696 697 985 2378
simpler Pell PPT generation aware of perimeter
first generate A000129:
“Pell numbers: a(0) = 0, a(1) = 1; for n > 1, a(n) = 2*a(n-1) + a(n-2).”
“0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860”
then:
(higher odd-position index) – (lower even-position index)
= perimeter – hypotenuse = NSW nos.
7 = 12 – 5
41 = 70 – 29
239 = 408 – 169
1393 = 2378 – 985
8119 = 13860 – 5741
finally, split:
floor
3 = ⌊average(-5,12)⌋ = ⌊7/2⌋
20 = ⌊average(-29,70)⌋ = ⌊41/2⌋
119 = ⌊average(-169,408)⌋ = ⌊239/2⌋
696 = ⌊average(-985,2378)⌋ = ⌊1393/2⌋
4059 = ⌊average(-5741,13860)⌋ = ⌊8119/2⌋
+ceiling
4 = ⌈average(-5,12)⌉ = ⌈7/2⌉
21 = ⌈average(-29,70)⌉ = ⌈41/2⌉
120 = ⌈average(-169,408)⌉ = ⌈239/2⌉
697 = ⌈average(-985,2378)⌉ = ⌈1393/2⌉
4060 = ⌈average(-5741,13860)⌉ = ⌈8119/2⌉
such that
3+4+5 = 12
20+21+29 = 70
119+120+169 = 408
696+697+985 = 2378
4059+4060+5741 = 13860
near-isosceles PPT generation (concisely)
1: vertical (90˚)
a(n) = 2*n + 1 ; b(n) = 2*(n+n^2) ; c(n) = b(n) + 1
e.g.
1: 3 4 5
2: 5 12 13
3: 7 24 25
4: 9 40 41
5: 11 60 61
2: horizontal (0˚)
a(n) = 4*n ; b(n) = 4*(n^2) – 1 ; c(n) = 4*(n^2) + 1
e.g.
1: 4 3 5
2: 8 15 17
3: 12 35 37
4: 16 63 65
Pell (45˚)
Recommendation: Set up tables (for example in Excel) for the 3 near-isosceles PPT series. For each row calculate simple things like perimeter & area. Then difference (and double-difference) things for adjacent PPTs (rows).
Having given a concise foundation (see last comment) I’m going to start simply copying/pasting whole rows from such a table into comments (without explanation, which is elementary enough).
Integer-scaling patterns in the tables match simplified (rounded-off) narratives.
There isn’t time to do more than rough out a selection of dots (no exhaustive treatment) for others to connect (or even more efficiently: choose not to connect).
15 & 1800
2 (horizontal) :
15 900 60 899 901 0 3600 808201 811801 116 4 116 116 0 464 195112 195576 1860 236 16 26970 5046 672 48 839 841 804601 15
1 (vertical) :
225 50625 451 101700 101701 0 203401 10342890000 10343093401 449 2 900 900 0 1800 182250000 182251800 203852 1802 8 22933350 303750 2694 12 101249 101250 10342686599 225
405….k
σ(223) = 224
σ(224) = 504
224 50176 449 100800 100801 0 201601 10160640000 10160841601 447 2 896 896 0 1792 179830784 179832576 202050 1794 8 22629600 301056 2682 12 100351 100352 10160438399
1800 = 201601-203401
“you’ve got THE BLUES too
all that Ny^e˚T˚nd all˚Th’Un’X˚T
(M s)a(m w)yth outlookkingback
MAID(h)˚Th’www’$$T˚earn($lloodd)
(hll!$)$(!)lly˚F($1100)” hear˚T[he][earth] BR(!)CO(np!dn)h!
224 200704 896 200703 200705 0 802816 40281694209 40282497025 1788 4 1788 1788
225 202500 900 202499 202501 0 810000 41005845001 41006655001 1796 4 1796 1796
1796 = 896+900 = 202499-200703 = 202501-200705 = 894+902
σ(894) = 1800
Σδ(378) = 752 ; Σδ(752) = 894
Σδ(894) = 902 ; Σδ(902) = 894
224 50176 449 100800 100801 0 201601 10160640000 10160841601 447 2 896 896 0 1792 179830784 179832576 202050 1794 8 22629600 301056 2682 12 100351 100352 10160438399 897 224 896 200704 200706 200703 100353 0 898
225 50625 451 101700 101701 0 203401 10342890000 10343093401 449 2 900 900 0 1800 182250000 182251800 203852 1802 8 22933350 303750 2694 12 101249 101250 10342686599 901 225 900 202500 202502 202499 101251 0 902
234 = 2*117 = 163+71 ; 117 = 58+59
adjacent perimeters m = 233, 234
937 = average(-467-109044-109045,469+109980+109981)
1106 = 7*158
2212 = 14*158
4424 = 28*158 ; 28 = s(28)
3-4-5 & 20-21-29 : 15 & 290
41 = 21^2 – 20^2 = 441 – 400
40 1600 81 3280 3281 0 6561 10758400 10764961 79 2 160 160 0 320 1024000 1024320 6642 322 8 132840 9600 474 12 3199 3200 10751839 161 40 160 6400 6402 6399 3201 0 162
41 1681 83 3444 3445 0 6889 11861136 11868025 81 2 164 164 0 328 1102736 1103064 6972 330 8 142926 10086 486 12 3361 3362 11854247 165 41 164 6724 6726 6723 3363 0 166
163 26569 327 53464 53465 0 106929 2858399296 2858506225 325 2 652 652 0 1304 69291952 69293256 107256 1306 8 8741364 159414 1950 12 53137 53138 2858292367 653 163 652 106276 106278 106275 53139 0 654
164 26896 329 54120 54121 0 108241 2928974400 2929082641 327 2 656 656 0 1312 70575104 70576416 108570 1314 8 8902740 161376 1962 12 53791 53792 2928866159 657 164 656
the obvious twin prime pair in PPT series 2: 3, 5
15 = 3*5
10 = 13-3
13 = 117-104
18 = 13+5
22 = 18+4
553 = 657 – 104 ; 1106 = 2*553 ; 2212 = 2*1106 ; 4424 = 2*2212
11 = average(18,4)
11^2 = 121
63 = 10+13+18+22
58 = 121-63
19 = x mod 24 for x = 19, 43, 67, 163
158 = average(1+2+3+7+11, 19+43+67+163)
37 = 158-121 = s(323) = s(17*19) = 17+19+1 ; σ(323) = 360
σ(290) = 540 ; 657 =117+540
σ(145) = 180 ; 297 = 117+180
194 = Σs(145)
400 = 20^2 = s(7^2^2) = ΣΦ(323)-Σφ(323) = 447-47 = 993-593 ; 993 = (σ^2)(400)
323 = 196883-196560
296 87616 593 175824 175825 0 351649 30914078976 30914430625 591 2 1184 1184 0 2368 414949376 414951744 352242 2370 8 52131816 525696 3546 12 175231 175232 30913727327 1185 296 1184 350464 350466 350463 175233 0 1186
297 88209 595 177012 177013 0 354025 31333248144 31333602169 593 2 1188 1188 0 2376 419169168 419171544 354620 2378 8 52661070 529254 3558 12 176417 176418 31332894119 1189 1485 900 1485 297 1188 352836 352838 352835 176419 0 1190
145 = 3^4 + 4^3 ; 29 = (3^4 + 4^3)/5
290 divides 58
158 = 10+13+18+22+37+58
239 = average(158,320)
320 = 28+163+67+43+19
3*5 = 15
15^2 = 225 = φ(657)
1: 1
2: 1 2
3: 1 3
12: 1 2 3 4 6 12
17: 1 17
28: 1 2 4 7 14 28
32: 1 2 4 8 16 32
72: 1 2 3 4 6 8 9 12 18 24 36 72
108: 1 2 3 4 6 9 12 18 27 36 54 108
117: 1 3 9 13 39 117
297: 1 3 9 11 27 33 99 297
657: 1 3 9 73 219 657
unique composite sum
432 = 4+6+8+12+14+16+18+28+24+32+36+54+72+108 = 2 * 216 = Φ(657)
miscellaneous notes
290+15^2 = Σs(178) = 657-171-71
ΣΦ(216) = ΣΦ(117) = ΣΦ(252) = 111 ; 223 = ΣΦ(504)
φ(290) = s(15^2) = s(225) = 178 ; δ(657) = 225
Φ(1806) = 504
504 = δ(744) = σ(220) = σ(284) = 400+104 = 657-153
153 = 316-163 ; 158 = ΣΔ(153)
δ(252) = 180 = Δ(297) = Φ(297) ; 297 = 117+180 ; Δ(894) = 297
δ(504) = 360 = σ(323) ; 657 = 297+360
735 = ΣΦ(1800) = Σφ(432) ; 432 = Δ(657)
φ(837) = 297 ; φ(297) = 117 = Δ(354)
Φ(378)+Φ(216) = 180 ; Φ(378) = 108 ; Φ(216) = 72
378-216 = 162 = ΣΔ(378) = Φ(163) ; 163 = ΣΦ(378)
28 = s(28) ; 6 = s(6)
34 = 6 + 28 = 2 * 17
17 289 35 612 613 0 1225 374544 375769 33 2 68 68 0 136 78608 78744 1260 138 8 10710 1734 198 12 577 578 373319 69 17 68 1156 1158 1155 579 0 70
1225 1500625 2451 3003700 3003701 0 6007401 9.02221E+12 9.02222E+12 2449 2 4900 4900 0 9800 29412250000 29412259800 6009852 9802 8 3681034350 9003750 14694 12 3001249 3001250 9.02221E+12 4901 1225 4900 6002500 6002502 6002499 3001251 0 4902
supplementary notes on 104-level ties to A100570 (& 744-levels)
10 = 5+5 ; 10^2 = 100 = 158-58
17 = average(s(6),s(28)) ; 117 = 41+76
17: 1 17 ; sum divisor^2 = 1^2 + 17^2 = 290
11^2 – 10^2 = 58-37 = 21
11^2 = 158-37
140 = 158-18
145 = 158-13 = average(1^2,17^2)
24 = 37-13
19 = 37-18
19 = 163 mod 24 = 67 mod 24 = 43 mod 24 = 19 mod 24
76 = 163 mod 24 + 67 mod 24 + 43 mod 24 + 19 mod 24
28 = 10+18
32 = 10+22
35 = 13+22
47 = 10+37
59 = 22+37
71 = 13+58
180 = 22+158
216 = 58+158
316 = 158+158
168 = 10+158
240 = 168 + 70 + (5-3)
234 = 13*18
1369 = 37^2
2378 = 41*58
902 = 41*37
1 = 73 mod 24 ; next prime is 79
158 = 31 + 31st prime = 2 * 79
harmonic divisor nos.
7 = 1+6 ; 7^2 = 49
35 = 1+6+28 ; 35^2 = 1225
h(x) x
1 1
2 6
3 28 = 4*(1+6)
5 140 = 4*(1+6+28)
5 496 = 270+15^2+1
6 270 = 504 – 234
7 8128; φ(8128) = 4096
8 672 = 657+15
9 1638
10 6200
11 2970 = 297*(5+5) = 297*(h(140)+h(496))
15 8190
432 = average(-12-32-72-108,17+117+297+657) without 1+2+3 = s(6) = 6 & 28 = s(28)
657 = (1+2+3)+(28)+(17)+12+72+108+117+297
657 = (2)+(32)+(17)+12+72+108+117+297 ; twin prime gap = 2 = 5-3 ; 2^5 = 32
153 = 17 * 3^2 ; 13 = 9+5 ; 140 = 153-13 ; 37 = 2^5+5 ; 58 = 53+5
prime+5 for 10, 18, 22, 58
3^2 & 2^5 +5 for 13 & 37
37-13 = 24 ; 12 = average(-13,37) ; 41 = 3^2+2^5 = 3^(5-3)+(5-3)^5
9 81 19 180 181 0 361 32400 32761 17 2 36 36 0 72 11664 11736 380 74 8 1710 486 102 12 161 162 32039 37 9 36 324 326 323 163 0 38
typo: 2^3 vs. 3^2
2^3 & 2^5 +5 for 13 & 37
tabulations
3,4,5 PPT contains twin prime pair 3,5 ; 3*5 = 15
difference diagonal sequence begins 3, 5, 4, 15 = 37-22
145 = ( 3^4 + 4^3 ) / 5
1 unknown remains.
acceptable menu highlights (browse 58 rows & columns) :
71 — M
216 — Plato
316 (also note 19, 24, & 76) — Heegner
A020495 includes not 37, 22, 18, & 13 but 58 & 10 (lowest)
_
104-level review
104.212132286568 = ⌊(e^√10π)^(1/2)⌉^2 – e^√10π
-103.947369666712 = ⌊(e^√13π)^(1/2)⌉^2 – e^√13π
104.007114381762 = ⌊(e^√18π)^(1/2)⌉^2 – e^√18π
104.001742574386 = ⌊(e^√22π)^(1/2)⌉^2 – e^√22π
-103.999977946281 = ⌊(e^√37π)^(1/2)⌉^2 – e^√37π
104.000034332275 = ⌊(e^√58π)^(1/2)⌉^2 – e^√58π
correction, recipe
fact check: “1 unknown remains.”
((blueCOllAR˚Curious George aside inEUropeDon˚T!ache3,5twin prime debate 2^far with 2^3 = 8 = 18-10 & 2^5 = 32 = 22+10 no. win just in duh AR? earn true dough’s ENSO AR sh!op temp˚T=ice+yawn))
start with lowest no. that’s neither square nor square + prime:
10
use pieces of 3,4,5 twin prime PPT to complete series
13 = 10+3
18 = 13+5
22 = 18+4
37 = 22+3*5
58 = (10+13+18+22+37)-((3^4+4^3)/5+13) = 10+18+22+37-(3^4+4^3)/5
158 = 10+13+18+22+37+58
alternatively
58 = ((3^4+4^3)+13)-(10+13+18+22+37) = (3^4+4^3)-(10+18+22+37)
clarification
(3^4+4^3) = 145 &
(3^4+4^3)/5 = 29
property of type 1 aiPPTs, including 3,4,5 which is shared with both Pell & type 2
((in blueCOllARease: 5un porpoise cc rev verse in clues of 11y))
12 0˚Clock:
functional numeracy debate
why phi?sh!un+11=SST “c˚nUKsh!yuan is made”
twin prime pair(s(n))+un=n˚yABlew
water JSUNheard earn deep dive
sales just in duh!enso!sh!op
“CCpickup that gui˚Tar&talk 2^ME” P
58 = average(-(3^4+4^3)/5,(3^4+4^3)) = average(-29,145)
how too /5pell that with functional numeracy?
58 = average(-√(20^2+21^2),145)
58 = (20+21+29)-(3+4+5) = 70-12
41 = 20+21 = 21^2-20^2
type 1 PPT m = 41 hypotenuse length change from previous in series:
164 = 3445-3281
type 1 PPT m = 164 perimeter change from previous (m=163) in series:
1314 = (329+54120+54121)-(327+53464+53465) ; ‘n’so:
657 = average(-(327+53464+53465),(329+54120+54121))
˚TruMP (with “Far age”) : fool me once
BoreUS (with drama queen) : fool me twice ??
No. who‘s tri˚Cking now 2^further “justify” luckdown dumb*sses ITally?
45˚Top write too bought’em left corner/5pell
The Butterfly
oeis is pretty useful (missing a lot, but not everything)
https://oeis.org/search?q=4+1+3+2+1+4+1
https://oeis.org/search?q=1+4+1+2+3+1+4 reverse
too cue^BS
note$well :
96^3 = 884736
96 = 24 * 4
24 = 24 * 1
24 = 8 * 3
8 = 4 * 2
4 = 4 * 1
4 = 1 * 4
1 = 1 * 1
1 — start with 1 and build up
don[˚T]yell’s myth 14
selective note$ for 123
an aztec poll lover 14
163 = 67 + 96
67 = 43 + 24
43 = 19 + 24
19 = 11 + 8
11 = 7 + 4
7 = 3 + 4
3 = 2 + 1
2 = 1 + 1
1 — start with 1 (& bill dupe)
m=37 (a 104-level)
37^2 = 1369
148 (hypotenuse change from previous in series)
298 (perimeter change from previous) (remember that?)
m=148: 593
657-593 = 64
https://oeis.org/A068227/b068227.txt
64 4
65 1
66 3
67 2
68 1
69 4
70 1
8^2 indexes multiplicity changes of Heegner no. differences (in reverse)
look at rows m=35,36,37
the butterfly, she see what he ignore:
58 4
59 1
60 3
61 2
62 1
63 4
64 1
https://oeis.org/A025428/b025428.txt
discrete measure mean˚T f*IT square$ at least
_
miscellaneous notes
3 4 5
20 21 29
differences
17 17 24
cumulative sum of Pell perimeters & double:
12 24
82 164
490 980
2868 5736
16728 33456
16-15=1
837 116 845
123 836 845
PPT table
116 = 29 * 4 = 2 * 58
as a PR cedin’with blue collar ease:
MEtri˚C moon sst˚ar hh0use pot 11
review
8 = 902-894
64 = 284-220
in excel, column A
1 2 3 4 5 etc.
enter following in cell B1, copy/paste downwards:
=IF(A1<5,A1,IF(MOD(A1,5)=0,OFFSET($B$1,A1/5-1,0),OFFSET($B$1,A1-FLOOR(A1/5,1)-1,0)))
23 1
24 4
25 1
26 2
27 3
28 1
29 4
https://oeis.org/A255825
A138967: “Infinite Fibonacci word on the alphabet {1,2,3,4}.”
1
4
1
2
3
1
4
1
1 = 1 * 1
4 = 4 * 1
4 = 1 * 4
8 = 2 * 4
24 = 3 * 8
24 = 1 * 24
96 = 4 * 24
1
2 = 1 + 1
3 = 1 + 2
7 = 4 + 3
11 = 4 + 7
19 = 8 + 11
43 = 24 + 19
67 = 24 + 43
163 = 96 + 67
1 = (1+3) / 4
2 = (1+7) / 4
3 = (1+11) / 4
5 = (1+19) / 4
11 = (1+43) / 4
17 = (1+67) / 4
41 = (1+163) / 4
Pell PPT 1 & 2
3 4 5
20 21 29
1 = 4-3 = 21-20
2 = 5-3 (twin prime PPT)
3 = 3
5 = 5
11 = (29-20)+(5-3)
17 = 20-3 = 21-4
41 = 20+21 = 21^2-20^2
2, 3, 5, 11, 17, 41
lowest square = 0^2 = 0
lowest semiprime = 2*2 = 4 ; therefore
lowest square + semiprime = 0+4 = 4
1, 2, & 3 can’t be expressed as square + semiprime
cumulative sum of column 2 in column 3
1 1 1
2 2 3
3 3 6
4 12 18 18
5 17 35 22 13
6 28 63 22 18 13 10
7 32 95 58 37
“The terms of the sequence cannot be easily calculated, even with raw number crunching power. This keyword is most often used for sequences corresponding to unsolved problems […]” — “easy”
Φ(657) = 432 = 360+72 ; 72 = Φ(216)
φ(657) = 225 = 117+108 ; 108 = Φ(378)
σ(145) = 180 ; 194 = Σs(145)
σ(323) = 360
σ(290) = 540 ; (σ_2)(17) = 290
φ(290) = s(225) = 178
φ(297) = 117 ; Φ(117) = 72 = 180-108
Φ(297) = Φ(836) = Φ(209) = 180 ; 297 = Δ(894)
3,4,5 PPT contains
divisor sum lowest
twin prime product
σ(15) = 24
19 = x mod σ(3*5) for x = 163, 67, 43, 19
247 = average(-163,657) = average(Σφ(323),ΣΦ(323)) = ΣΦ(490)
7*19 = 133 ; Φ(133) = 108 = 216 / 2
11*19 = 209 ; Φ(209) = 180 = 360 / 2
13*19 = 247 ; Φ(247) = 216 = 158+58
17*19 = 323 ; Φ(323) = 288 = 180+108
323 = 196883-196560 ; σ(323) = 360
ΣΦ(323) = 447 ; 47 = Σφ(323) ; average = 247
A100570 mnemonic: 158-58 = 10+13+18+22+37 =
100; 570 = 323+247
odd prime divisor sum = 1+3+7+11+13+17+73 = 125
6^3 = 3^3 + 4^3 + 5^3 ; 216 = 27 + 64 + 125
64 = 657-593 = 284-220 = (902-894)^2
171 = average(209,133)
342 = 209+133
76 = 209-133 = 163 mod σ(3*5) + 67 mod σ(3*5) + 43 mod σ(3*5) + 19 mod σ(3*5)
342 = Σδ(220) = 2 *171
142 = ΣΔ(220) = 2 * 71
200 = 342-142 = 378-178
400 = s(2401) = ΣΦ(323)-Σφ(323) = Σs(242)
993 = 593+400 = (σ^2)(400) = 3 * 331
902 = Σδ(894) = Σδ(Σδ(993)) = Σδ(Σδ(Σδ(378)))
noteworthy midpoint
64 64 311 4 = average(311 mod 4, 311 mod 6)
65 65 313 1 = average(313 mod 4, 313 mod 6)
66 66 317 3 = average(317 mod 4, 317 mod 6)
67 67 331 2 = average(331 mod 4, 331 mod 6)
68 68 337 1 = average(337 mod 4, 337 mod 6)
69 69 347 4 = average(347 mod 4, 347 mod 6)
70 70 349 1 = average(349 mod 4, 349 mod 6)
“The name “genity” was derived from “genes” and “parity”, since the fourfold values of g(p) in a sequence corresponding to prime arguments resemble the genetic sequences of the nucleotides in the DNA.”
RMS
number: divisors
1: 1
7: 1 7
41: 1 41
239: 1 239
287: 1 7 41 287
1673: 1 7 239 1673
√average(number divisor^2) = value ; e.g. 7:
√average(1^2,7^2) = √average(1,49) = √25 = 5
number value
1 1
7 5
41 29 = (3^4 + 4^3)/5
239 169
287 145 = 3^4 + 4^3
1673 845 = 5 * 169
158 = 10+13+18+22+37+58 (104 levels)
239 = average(158,320)
320 = 28+163+67+43+19 (744 levels)
starting with
10 = 5 * 2
58 = 29 * 2
1+2+3+12+17+28+32 = 58+d
1+2+3+12+17+28 = c+b+a+10
1+2+3+12+17 = a+c
1+2+3+12 = b
“The terms of the sequence can be easily calculated.” — OEIS Wikipedia
Curiously, the following sequence (of 104 levels) is linked to neither A020495 nor A100570 in the OEIS: 10, 13, 18, 22, 37, 58.
A025428 “Number of partitions of n into 4 nonzero squares.”
4
58 = 7^2+2^2+2^2+1^2
58 = 5^2+4^2+4^2+1^2
58 = 5^2+5^2+2^2+2^2
58 = 6^2+3^2+3^2+2^2
1
59 = 5^2+4^2+3^2+3^2
3
60 = 7^2+3^2+1^2+1^2
60 = 5^2+5^2+3^2+1^2
60 = 6^2+4^2+2^2+2^2
2
61 = 7^2+2^2+2^2+2^2
61 = 5^2+4^2+4^2+2^2
1
62 = 6^2+4^2+3^2+1^2
4
63 = 6^2+5^2+1^2+1^2
63 = 7^2+3^2+2^2+1^2
63 = 5^2+5^2+3^2+2^2
63 = 6^2+3^2+3^2+3^2
1
64 = 4^2+4^2+4^2+4^2
Subtle Distinction
4424 = 158*28 = 316*14 ——— 44.24114502 JEV
2212 = 158*14 = 316*7 ———- 22.12057251 anomalistic˚Con’t ai’n’minT331
1106 = 158*7 = 316*3.5 ——– 11.06028625 Standish (1992)
553 = 657 – 104
153 = 657 – 504 ; 504 = σ(220)
400 = 553 – 153
400 = 504 – 104
163 = 316 – 153
158 = 10+13+18+22+37+58 (104 levels)
158 = 902 – 744 ; 744 = σ(240)
245 = 902 – 657
central being, so average
237 = 894 – 657
240 = 744 – 504
76 = 316 – 240
17 = 657 – 640 ; (σ_2)(17) = 290
640 = 744 – 104
320 = 28+163+67+43+19 (744 levels)
64 = 284 – 220
8 = 902 – 894
mean˚Too laugh?doubt write go/5pell orrery:
x ln(x)
1 0
2 0.693147181
3 1.098612289
7 1.945910149
11 2.397895273
19 2.944438979
43 3.761200116
67 4.204692619
163 5.093750201
sum:
316 22.13964681
22.13941145 —————— NASA ‘factsheet’ JEV sidereal
measure weather number theory or knew miracll method
nigh$awe˚CelleSST˚R(!)angll
240 = σ(158) = σ(47+59+71)
117 = ΣΦ(158) ; 158 = ΣΔ(153)
234 = 2 * 117 = σ(153)
2953 = 4724-47*59*71+⌊(47*59*71)^(1/3)⌉^3
9.93288388379268 = (657+196883-196560)^(1/3)
19.8657677675854 = (657+196883-196560)^(1/3) * 2
7 = (⌊(657+196883-196560)^(1/3)⌉^3-657)^(1/3)
343 = ⌊(657+196883-196560)^(1/3)⌉^3-657 = 7^3
703 = ⌊(657+196883-196560)^(1/3)⌉^3-297
883 = ⌊(657+196883-196560)^(1/3)⌉^3-117
spacing
σ(145) = 180
σ(323) = 360
σ(290) = 540
/5pell function? all numeracy
2320 = = (2*290+1)^2-(2*(290-1)+1)^2
2362 = (
2*(5*59)+1+
2*((5*59)+(5*59)^2)+
2*((5*59)+(5*59)^2)+1
)-(
2*(5*59-1)+1+
2*((5*59-1)+(5*59-1)^2)+
2*((5*59-1)+(5*59-1)^2)+1) = 4724 / 2
“CR˚0$$ that BRI(p.36) when nigh fined IT” DD
297 88209 595 177012 177013 0 354025 31333248144 31333602169 593 2 1188 1188 0 2376 419169168 419171544 354620 2378
primorial
2# = 2
3# = 3*2 = 6
5# = 5*3*2 = 30
7# = 7*5*3*2 = 210
super-primorial
2## = 2
3## = 3#*2# = 12
5## = 5#*3#*2# = 360 = σ(196883-196560)
7## = 7#*5#*3#*2# = 75600 = 378*(378-178)
X-pawn save IT
178 = Σs(44)
alley mi+c queue
7## = 378*(378-Σs(44))
add diss high pell
32 = Σs(15)
compute331in co˚too chasm
32 = Σs(3*5)
1314 = 1+2+3+12+17+28+32+72+108+117+297+657-Σs(3*5)
twin prime
s(33) = 15 = s(16)
navy blue watt?
s(15) = 9
s(9) = 4
s(4) = 3
s(3) = 1
s(1) = 0
or WellCOunT˚˚7: 1 4 1 2 3 1 4
58 = ⌊196883^(1/3)⌋
59 = ⌈196883^(1/3)⌉
117 = ⌊196883^(1/3)⌋ + ⌈196883^(1/3)⌉ = x mod 180 where x = 657, 297, 117
220 = average(117,323)
220 = average(floor((47*59*71)^(1/3),1)+ceiling((47*59*71)^(1/3),1),196883-196560)
R(1,1/2,58) = 0.000034332275390625 = ⌊(e^√58π)^(1/1)⌉^1 – e^√58π
R(2,1/2,58) = 104.000034332275 = ⌊(e^√58π)^(1/2)⌉^2 – e^√58π
R(3,1/2,58) = 139560.000034332 = ⌊(e^√58π)^(1/3)⌉^3 – e^√58π
R(4,1/2,58) = 104.000034332275 = ⌊(e^√58π)^(1/4)⌉^4 – e^√58π
104 = d(2,1/2,58) = R(2,1/2,58) – R(1,1/2,58)
139560 = d(3,1/2,58) = R(3,1/2,58) – R(1,1/2,58)
104 = d(4,1/2,58) = R(4,1/2,58) – R(1,1/2,58)
R(1,1/3,59) = 0.0133833873842377 = ⌊(e^π*59^(1/3))^(1/1)⌉^1 – e^π*59^(1/3)
R(2,1/3,59) = 323.013383387384 = ⌊(e^π*59^(1/3))^(1/2)⌉^2 – e^π*59^(1/3)
323 = d(2,1/3,59) = R(2,1/3,59) – R(1,1/3,59)
R(1,1/2,28) = 0.0118744149804115 = ⌊(e^√28π)^(1/1)⌉^1 – e^√28π
R(2,1/2,28) = 553.01187441498 = ⌊(e^√28π)^(1/2)⌉^2 – e^√28π
R(3,1/2,28) = 744.01187441498 = ⌊(e^√28π)^(1/3)⌉^3 – e^√28π
R(4,1/2,28) = 196585.011874415 = ⌊(e^√28π)^(1/4)⌉^4 – e^√28π
196585 = d(4,1/2,28) = R(4,1/2,28) – R(1,1/2,28)
744 = d(3,1/2,28) = R(3,1/2,28) – R(1,1/2,28)
553 = d(2,1/2,28) = R(2,1/2,28) – R(1,1/2,28)
7 = ⌊323^(1/3)⌉
14*158 = 7*316 = 4*553 = 2212 anomalistic JEV
657 = 553+104
57000 = 196560-139560
= 3*19*round((657+196883-196560)^(1/3),0)^3
= 57*⌊980^(1/3)⌉^3
miscellaneous notes
7## = 378*(378-178)
7## = 378*(378-φ(290))
7## = 378*(378-s(225))
“The only Pell numbers that are squares, cubes, or any higher power of an integer are 0, 1, and 169 = 13^2.”
worthwhile: explore trivial systematic relations with Pell – e.g. difference, integrate, sum & difference for even & odd indices, look at ratio convergences, differences with increasing index gaps, silver mean (binet gold analog), etc.
https://oeis.org/A002203
https://oeis.org/A001333
test
7 49 15 112 113 0 225 12544 12769 13 2 28 28 0 56 5488 5544 240 58 8 840 294 78 12 97 98 12319 29 28 196 198 195 99 0 30
1692 = 2112–420
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
abstract appearance of anomalistic hindsight: 58 never lost in the no. stream
60.8544553085225 = slip(29.4701958106261,11.8627021700857)
936.955612197393 = slip(60.8544553085225,19.8549641949401)
937 = average(
-((2*(234-1)+1)+(2*((234-1)+(234-1)^2))+(2*((234-1)+(234-1)^2)+1))
,((2*(234-0)+1)+(2*((234-0)+(234-0)^2))+(2*((234-0)+(234-0)^2)+1)) )
234 = 2 * 117
234.238903049342 = slip(65.0814383478416,19.8549641949401)
117.119451524671 = slip(50.9307341302372,19.8549641949401) ~= 117
review foundations
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
9.92748209747005 = 19.8549641949401 / 2
4.96374104873503 = 19.8549641949401 / 4
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
8.45806059760692 = axial(29.4701958106261,11.8627021700857)
4.22903029880346 = 8.45806059760692 / 2
2.11451514940173 = 8.45806059760692 / 4
supplementary
17.2271460578308 = beat(936.955612197393,16.9161211952138)
8.61357302891541 = 17.2271460578308 / 2
4.30678651445771 = 17.2271460578308 / 4
||||||||||||||||||||||||||||||||||||||||||||||||||||
33.2322557333676 = harmean(936.955612197393,16.9161211952138)
16.6161278666838 = axial(936.955612197393,16.9161211952138)
8.3080639333419 = 16.6161278666838 / 2
4.15403196667095 = 16.6161278666838 / 4
130.162876695683 = slip(19.8549641949401,17.2271460578308)
65.0814383478416 = slip(19.8549641949401,8.61357302891541)
50.9307341302372 = slip(19.8549641949401,4.30678651445771)
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101.861468260475 = slip(19.8549641949401,16.6161278666838)
50.9307341302375 = slip(19.8549641949401,8.3080639333419)
90.1207922119932 = slip(19.8549641949401,4.15403196667095)
————————————————————————————
alternate derivation
6.57189983390616 = axial(14.735097905313,11.8627021700857)
13.1437996678123 = harmean(14.735097905313,11.8627021700857)
10.7471650296459 = beat(16.9161211952138,6.57189983390616)
5.37358251482297 = 10.7471650296459 / 2
2.68679125741149 = 10.7471650296459 / 4
||||||||||||||||||||||||||||||||||||||||||||||||||||
9.46619163320184 = harmean(16.9161211952138,6.57189983390616)
4.73309581660092 = axial(16.9161211952138,6.57189983390616)
2.36654790830046 = 4.73309581660092 / 2
1.18327395415023 = 4.73309581660092 / 4
130.162876695683 = slip(19.8549641949401,10.7471650296459)
65.0814383478414 = slip(19.8549641949401,5.37358251482297)
50.9307341302375 = slip(19.8549641949401,2.68679125741149)
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101.861468260475 = slip(19.8549641949401,4.73309581660092)
50.9307341302375 = slip(19.8549641949401,2.36654790830046)
90.1207922119933 = slip(19.8549641949401,1.18327395415023)
————————————————————————————
further review
2362.08778401397 = slip(101.861468260475,8.45806059760692)
2362.08778401782 = slip(50.9307341302372,8.45806059760692)
4724.17556802794 = slip(101.861468260475,16.9161211952138)
4724.17556803565 = slip(50.9307341302372,16.9161211952138)
llucklly enough
1 = (1+3) / 4
2 = (1+7) / 4
3 = (1+11) / 4
5 = (1+19) / 4
11 = (1+43) / 4
sum = 22 = 1*10 + 12 ; 11 = 1*5+3#
sum = 58 = 7*10 – 12 ; 29 = 7*5-3# ; 12 = 3##
17 = (1+67) / 4
41 = (1+163) / 4
70+22-10-58 = 24 ; so average
70+44-10-58 = 104-58 = average(22,70) = Φ(47) ; hhear in the˚Center
478 = 2 * 239 = 58+420
478 = sum 744 levels + sum 104 levels
478 = 28+163+67+43+19 + 10+13+18+22+37+58
420 = 28+163+67+43+19 + 10+13+18+22+37 = 316+104
no. how to spell functionllnumeracy
490 = 12+70+408 = 58 + 432 = 70 + 420
with token weather part III or 2D bait
58 3364 117 6844 6845 0 13689 46840336 46854025 115 2 232 232 0 464 3121792 3122256 13806 466 8 400374 20184 690 12 6727 6728 46826647 233 232 13456 13458 13455 6729 0 234
-((2*(7-1)+1)+(2*((7-1)+(7-1)^2))+(2*((7-1)+(7-1)^2)+1))
+((2*(7-0)+1)+(2*((7-0)+(7-0)^2))+(2*((7-0)+(7-0)^2)+1)) = 58
10000 = 100^2 ; (23) 1 4 1 2 3 1 4 (29) ; (58) 1 4 1 2 3 1 4 (70)
100 = 10+13+18+22+37 = sum 1st 23 primes = 2212-2112
158 = 10+13+18+22+37+58
432 186624 865 374112 374113 0 748225 1.3996E+11 1.39961E+11 863 2 1728 1728 0 3456 1289945088 1289948544 749090 3458 8 161803440 1119744 5178 12 373247 373248 1.39959E+11 1729
-((2*(432-1)+1)^2)
+((2*(432-0)+1)^2) = 3456 =
-((2*((432-1)+(432-1)^2))+(2*((432-1)+(432-1)^2)+1))
+((2*((432-0)+(432-0)^2))+(2*((432-0)+(432-0)^2)+1))
add JSUN type won near ice awe sol ease try angles
-((2*(432-1)+1)+(2*((432-1)+(432-1)^2))+(2*((432-1)+(432-1)^2)+1))
+((2*(432-0)+1)+(2*((432-0)+(432-0)^2))+(2*((432-0)+(432-0)^2)+1)) =
3458 = 2112+1346
1346 = 1+2+3+12+17+28+32+72+108+117+297+657
12 = 432-420 = 490-478 = (19+43+67)-117 ; 24 = 1+2+3+7+11 = 71-47
without missinllink, well above, said taco to X Pence Sov. snow “don˚T no.”
(19+43+67)-71 = 117-59 = 58 ; 104 = 163-59 ; 117 = 163-Φ(47)
σ(Φ(47))^5 – Φ(47)^5 – 47^5 = 19^5 + 43^5 + 67^5 ; Σφ(323) = 47
(23) 1 4 1 2 3 1 4 (29)
(58) 4 1 3 2 1 4 1 (70) typo˚correction
2022.00011048077 =
slip(slip(slip(19.8549641949401,1.18327395415023),8.45806059760692),slip(19.8549641949401,2.36654790830046))
Φ(59) = 58
Φ(58) = 28
Φ(28) = 12
Φ(12) = 4
Φ(4) = 2
Φ(2) = 1 ; 105 = ΣΦ(59)
-104+Φ(163) = 163-ΣΦ(59) = Φ(59) = 58 = -ΣΦ(59)+ΣΦ(378) ; ΣΦ(378) = 163 = 104+59
√(1^2+2^2+3^2+…+22^2+23^2+24^2) = 70 = 104-34 ; 34 = average(10,58) = s(6)+s(28)
index prime
1 2
2 3
3 5 —
4 7 ——
5 11
7 17 ——
17 59
117 = Φ(59)+59
Party in the ˚Center
24 = 19+43+67-ΣΦ(59) = (70-10)-(58-22) ; 1184 = s(1210) ; 894 = Σδ(902)
√(1^2+2^2+3^2+…+22^2+23^2+24^2) = 70 = 117-47 ; Φ(47) = 117-71
117 = Φ(59) + 59 ; ΣΦ(59) = Φ(59)+47 ; 71+Φ(59) = 19+43+67
2112 = 2432-28-163-67-43-19 = 744+1368 = 1210 + 902 = 24^2 + 1536
nos. by (s(n)) amicably enough
902 = Σδ(894) = Σδ(Σδ(993)) = Σδ(Σδ(Σδ(378))) ; 1210 = s(1184)
41 = 64-23 = 70-29 ; 47 = 70-23 = 117-70
3# – 29-23 = 64-58 = 70-64 = 47-41 = average(19+43+67,-ΣΦ(59))
(23) 1 4 1 2 3 1 4 (29)
(58) 4 1 3 2 1 4 1 (64) another typo˚correction
(64) 4 1 3 2 1 4 1 (70)
28 = 7+2+5+3+2+7+2 = 11+17 = s(28)
sum of primes indexed by sequence of 7 he[luckily]ignore
prime minus index
3 = 7-4
2 = 5-3 ; 2^2 = 5^2 – 3^2 — lowest twin prime PPT hyp010use piece 5=2(v)+3(^)
1 = 3-2
3^1
3^2 + 4^2 = 5^2
3^3 + 4^3 + 5^3 = 6^3
3^4 + 4^4 + 5^4 + 6^4 = 2258 = 2 * 1129
Net search doesn’t find (mystery indeed) 2 key relationships established above (1 of which is generalizable from the special case noted above to all cases).
340 results found: https://oeis.org/search?q=1+2+3+1+4
127 results found: https://oeis.org/search?q=4+1+3+2+1
lucky seek winshe ignore˚C0[MP]PR($(n))Sh!Un…with no. scandal
1
1 = 1 * 1
2 = 1 * 2
6 = 2 * 3
6 = 6 * 1
24 = 6 * 4
1
2 = 1 + 1
3 = 1 + 2
5 = 2 + 3
11 = 6 + 5
17 = 6 + 11
41 = 24 + 17
00 note
even write
if
0 =
A000534(n-1)-A025428(n-1) =
A000534(n-0)-A025428(n-0)
then
n = A296579(i)
and
difference = 1
240-1 = 239 = average(158,320)
368-1 = 367 = 178+189 ; 189 * 2 = 378
448-1 = 447 = ΣΦ(323)
Σδ(378) = 752 = 1504 / 2
Σδ(752) = 894
Σδ(894) = 902 ; Σδ(902) = 894 = 2 * 447
1
376 = 1*376
1
2 = 1+1
378 = 376+2
in other words
“Number of partitions of n into 3 squares (allowing part zero).”
https://oeis.org/A000164
note instances of 2 consecutive 0s: https://oeis.org/A000164/b000164.txt
735 = 367+368 = 368^2-367^2 = ΣΦ(1800) ; 1800 = σ(894)
key insight arising from (luckily he ignore) “the butterfly expansion” of A025428:
189 = 367-178 ; then countless insights stream – too many to note all at once – select an example
188 = 368-180 ; 180 = σ(145) = 297-117
adjacent type 2 PPTs
1500 = 4*188^2-4*187^2
1500 = (4*188)^2-(4*187)^2 = 752^2-748^2
whereas
184 = average(180,188)
1470 = average(
-( (4*183) + ((4*183^2)-1) + ((4*183^2)+1) )
,( (4*184) + ((4*184^2)-1) + ((4*184^2)+1) ) )
with type 1 PPT
735 = 2*367+1 = side
otherside & hypotenuse change from previous in series
1468 = (2*(367+367^2)) – (2*(366+366^2)) = (2*(367+367^2)+1) – (2*(366+366^2)+1)
property of next triangle in series (case m = 368) compared with previous (case m = 367)
735 = 368^2-367^2
1472 = (2*(368+368^2)) – (2*(367+367^2)) = (2*(368+368^2)+1) – (2*(367+367^2)+1)
mean side change from previous in type 1 PPT series for pair m = 367 & m = 368
1470 = average(1468,1472)
no. typo mystery:
6000 = (4*188)^2-(4*187)^2 = 752^2-748^2
2nd lowest amicable pair: 1184 = s(1210) & 1210 = s(1184)
butterfly expansion A025428
1st (& only in 1st 10k) occurence of 4th power preceding square is for 2368 = 2*1184
81 = 3^4 precedes 3^2 = 9
The exceptional case resolves (natural & whole number fractal) focus.
type 1 PPT
295 87025 591 174640 174641 0 349281 30499129600 30499478881 589 2 1180 1180 0 2360 410758000 410760360 349872 2362 8 51606120 522150 3534 12 174049 174050 30498780319 1181 295 1180 348100 348102 348099 174051 0 1182
296 87616 593 175824 175825 0 351649 30914078976 30914430625 591 2 1184 1184 0 2368 414949376 414951744 352242 2370 8 52131816 525696 3546 12 175231 175232 30913727327 1185 296 1184 350464 350466 350463 175233 0 1186
297 88209 595 177012 177013 0 354025 31333248144 31333602169 593 2 1188 1188 0 2376 419169168 419171544 354620 2378 8 52661070 529254 3558 12 176417 176418 31332894119 1189 297 1188 352836 352838 352835 176419 0 1190
Average Party
in the Center
63 = 22+18+13+10
79 = average(63,95) = 158 / 2
95 = 37+58
158 = 95+63 = 2 * 79
1346 = 1+2+3+12+17+28+32+72+108+117+297+657 = 1314 + 32 ; notice where 47 isn’t
top*left-1
_ 8 16 32 64 128
1 7 15 31 63 127
2 15 31 63 127 255
3 23 47 95 191 383
4 31 63 127 255 511
5 39 79 159 319 639
6 47 95 191 383 767
7 55 111 223 447 895
8 63 127 255 511 1023
9 71 143 287 575 1151
10 79 159 319 639 1279
11 87 175 351 703 1407
12 95 191 383 767 1535
13 103 207 415 831 1663
14 111 223 447 895 1791
15 119 239 479 959 1919
16 127 255 511 1023 2047
left mod top
_ 8 16 32 64 128 256
127 7 15 31 63 127 127
111 7 15 15 47 111 111
79 7 15 15 15 79 79
47 7 15 15 47 47 47
15 7 15 15 15 15 15
00 note even write makes cumulative difference
177 = 71+59+47
129 = 67+43+19
111
112 1 1
239 127 128
240 1 129 1
367 127 256 128
368 1 257 129 1
447 79 336 208 80
448 1 337 209 81 1
495 47 384 256 128 48
496 1 385 257 129 49
623 127 512 384 256 176
624 1 513 385 257 177
751 127 640 512 384 304
752 1 641 513 385 305
879 127 768 640 512 432
880 1 769 641 513 433
959 79 848 720 592 512
960 1 849 721 593 513
1007 47 896 768 640 560
1008 1 897 769 641 561
1135 127 1024 896 768 688
1136 1 1025 897 769 689
1263 127 1152 1024 896 816
1264 1 1153 1025 897 817
1391 127 1280 1152 1024 944
1392 1 1281 1153 1025 945
1471 79 1360 1232 1104 1024
1472 1 1361 1233 1105 1025
1519 47 1408 1280 1152 1072
1520 1 1409 1281 1153 1073
1647 127 1536 1408 1280 1200
1648 1 1537 1409 1281 1201
1775 127 1664 1536 1408 1328
1776 1 1665 1537 1409 1329
1791 15 1680 1552 1424 1344
1792 1 1681 1553 1425 1345
1903 111 1792 1664 1536 1456
1904 1 1793 1665 1537 1457
1983 79 1872 1744 1616 1536
1984 1 1873 1745 1617 1537
incorrect link above – correction:
σ(Φ(47))^5 – Φ(47)^5 – 47^5 = 19^5 + 43^5 + 67^5
936.955612197409 = 1/(-2/11.8627021700857+5/29.4701958106261)
4270.51884168654 = 2/(1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
anomalistic periods (Standish 1992)
1536.74746987137 = harmean(4270.51884168654,936.955612197409)
Be aware there are some (unnoted) typos in recent comments (a cost of necessary time management). Check carefully.
at the center 4 dull typos (includes h/tml tags above)
say something boring
70-inclusive 1st 2 forward butterfly expansion A025428
Heegner’s lucky
2 reverse butterfly expansion A025428
opaque (at the center for average insight)
forward butterfly expansion
beginning on every line of A138967
(luckily too) includes Heegner nos.
( same for reverse construction (n-2)(n-1) instead of (n-1)(n-2) (a type of symmetry) )
also given above: solution to OEIS A100570
Standish (1992) sidereal (to be neither confused nor conflated with anomalistic)
1806.17637816713 = slip(65.4656719965873,6.57038184300286)
analogously: compare Seidelmann sidereal (~1800) with tropical (~900) * 2
NASA “factsheet”
1798.25390532374 = slip(65.4646083498784,6.57038000192319) — sidereal
899.995342082165 = slip(66.1360443524991,6.56535897749883) — tropical
Seidelmann (1992)
1800.67427686801 = slip(65.4650142672071,6.57038862222412) — synodic
899.727736185918 = slip(66.1361966326052,6.56535973915137) — tropical
^(1/2) = √
R(1,1/2,9) = 0.352192083306363 = ⌊(e^√9π)^(1/1)⌉^1 – e^√9π
R(2,1/2,9) = -70.6478079166936 = ⌊(e^√9π)^(1/2)⌉^2 – e^√9π
R(3,1/2,9) = -224.647807916694 = ⌊(e^√9π)^(1/3)⌉^3 – e^√9π
R(4,1/2,9) = 2249.35219208331 = ⌊(e^√9π)^(1/4)⌉^4 – e^√9π
71 = -d(2,1/2,9) = R(1,1/2,9) – R(2,1/2,9)
225 = -d(3,1/2,9) = R(1,1/2,9) – R(3,1/2,9) = 15^2
2249 = d(4,1/2,9) = R(4,1/2,9) – R(1,1/2,9)
2320 = 2249 + 71 = ⌊(e^3π)^(1/4)⌉^4 – ⌊(e^3π)^(1/2)⌉^2
= round(exp(3*pi())^(1/4),0)^4 – round(exp(3*pi())^(1/2),0)^2
15^2 = 225
5090 = ( 71 + 225 + 2249 ) * 2 = 2 * ( 2320 + 225 ) = ΣΣδ(220) * 2
2545 = 71 + 225 + 2249 = 2320 + 15^2 = 2320 + 225 = ΣΣδ(220)
2545 = R(1,1/2,9) – R(2,1/2,9) – R(3,1/2,9) + R(4,1/2,9)
2545 = round(exp(3*pi())^(1/1),0)^1 – round(exp(3*pi())^(1/2),0)^2 – round(exp(3*pi())^(1/3),0)^3 + round(exp(3*pi())^(1/4),0)^4
5090 = ( R(1,1/2,9) – R(2,1/2,9) – R(3,1/2,9) + R(4,1/2,9) ) * 2
5090 = ( round(exp(3*pi())^(1/1),0)^1 – round(exp(3*pi())^(1/2),0)^2 – round(exp(3*pi())^(1/3),0)^3 + round(exp(3*pi())^(1/4),0)^4 ) * 2
1800 ~= 2545 / √2 ~= 1 / ( 1 / 1470 + 1 / 2320 )
980 = σ(178+378) = 657+323
104-levels 10 & 18: powers 2 & 4
R(1,1/2,10) = 0.212132286567794 = ⌊(e^√10π)^(1/1)⌉^1 – e^√10π
R(2,1/2,10) = 104.212132286568 = ⌊(e^√10π)^(1/2)⌉^2 – e^√10π
R(3,1/2,10) = -948.787867713432 = ⌊(e^√10π)^(1/3)⌉^3 – e^√10π
R(4,1/2,10) = 104.212132286568 = ⌊(e^√10π)^(1/4)⌉^4 – e^√10π
104 = d(2,1/2,10) = R(2,1/2,10) – R(1,1/2,10)
949 = -d(3,1/2,10) = R(1,1/2,10) – R(3,1/2,10)
104 = d(4,1/2,10) = R(4,1/2,10) – R(1,1/2,10)
845 = 949 – 104
= 2*round(exp(sqrt(10)*pi())^(1/1),0)^1 – round(exp(sqrt(10)*pi())^(1/3),0)^3 – round(exp(sqrt(10)*pi())^(1/2),0)^2
= 2*round(exp(sqrt(10)*pi())^(1/1),0)^1 – round(exp(sqrt(10)*pi())^(1/3),0)^3 – round(exp(sqrt(10)*pi())^(1/4),0)^4
R(1,1/2,18) = 0.00711438176222146 = ⌊(e^√18π)^(1/1)⌉^1 – e^√18π
R(2,1/2,18) = 104.007114381762 = ⌊(e^√18π)^(1/2)⌉^2 – e^√18π
R(3,1/2,18) = -426.992885618238 = ⌊(e^√18π)^(1/3)⌉^3 – e^√18π
R(4,1/2,18) = 104.007114381762 = ⌊(e^√18π)^(1/4)⌉^4 – e^√18π
104 = d(2,1/2,18) = R(2,1/2,18) – R(1,1/2,18)
427 = -d(3,1/2,18) = R(1,1/2,18) – R(3,1/2,18)
104 = d(4,1/2,18) = R(4,1/2,18) – R(1,1/2,18)
323 = 427 – 104
= 2*R(1,1/2,18) – R(3,1/2,18) – R(2,1/2,18)
= 2*round(exp(sqrt(18)*pi())^(1/1),0)^1 – round(exp(sqrt(18)*pi())^(1/3),0)^3 – round(exp(sqrt(18)*pi())^(1/2),0)^2
= 2*R(1,1/2,18) – R(3,1/2,18) – R(4,1/2,18)
= 2*round(exp(sqrt(18)*pi())^(1/1),0)^1 – round(exp(sqrt(18)*pi())^(1/3),0)^3 – round(exp(sqrt(18)*pi())^(1/4),0)^4
R(1,1/3,59) = 0.0133833873842377 = ⌊(e^π*59^(1/3))^(1/1)⌉^1 – e^π*59^(1/3)
R(2,1/3,59) = 323.013383387384 = ⌊(e^π*59^(1/3))^(1/2)⌉^2 – e^π*59^(1/3)
323 = d(2,1/3,59) = R(2,1/3,59) – R(1,1/3,59)
= round(exp(59^(1/3)*pi())^(1/2),0)^2 – round(exp(59^(1/3)*pi())^(1/1),0)^1
323 = 196883 – 196560
5## = σ(323)
(5#)^2 = 900
R(1,1/2,5) = -0.186262891398655 = ⌊(e^√5π)^(1/1)⌉^1 – e^√5π
R(2,1/2,5) = 31.8137371086013 = ⌊(e^√5π)^(1/2)⌉^2 – e^√5π
R(3,1/2,5) = -124.186262891399 = ⌊(e^√5π)^(1/3)⌉^3 – e^√5π
R(4,1/2,5) = 171.813737108601 = ⌊(e^√5π)^(1/4)⌉^4 – e^√5π
32 = d(2,1/2,5) = R(2,1/2,5) – R(1,1/2,5) = s(58) = 1346 – 1314
124 = -d(3,1/2,5) = R(1,1/2,5) – R(3,1/2,5)
172 = d(4,1/2,5) = R(4,1/2,5) – R(1,1/2,5)
140 = 172 – 32 = ⌊(e^√5π)^(1/4)⌉^4 – ⌊(e^√5π)^(1/2)⌉^2
= round(exp(sqrt(5)*pi())^(1/4),0)^4 – round(exp(sqrt(5)*pi())^(1/2),0)^2
140: 1 2 4 5 7 10 14 20 28 35 70 140
5 = harmean(1,2,4,5,7,10,14,20,28,35,70,140)
5 = harmean(1,2,4,8,16,31,62,124,248,496)
496: 1 2 4 8 16 31 62 124 248 496
496 = 4 * 124 = -4 * d(3,1/2,5)
124 = ⌊(e^√5π)^(1/1)⌉^1 – ⌊(e^√5π)^(1/3)⌉^3
= round(exp(sqrt(5)*pi())^(1/1),0)^1 – round(exp(sqrt(5)*pi())^(1/3),0)^3
496 = 4 * ( ⌊(e^√5π)^(1/1)⌉^1 – ⌊(e^√5π)^(1/3)⌉^3 )
117 = -63+180*2^0 ; 0+1 = 1
297 = -63+180*2^1 ; 1+1 = 2
657 = -63+180*2^2 ; 2+1 = 3
194 = σ(p(19)-p(17)) where p(x) denotes partition function of x
17
columns
1: x
2: d(2,1/2,x)=R(2,1/2,x)-R(1,1/2,x)=⌊(e^√xπ)^(1/2)⌉^2-e^√xπ-⌊(e^√xπ)^(1/1)⌉^1
3: R(2,1/2,x)=⌊(e^√xπ)^(1/2)⌉^2-e^√xπ
4: R(1,1/2,x)=⌊(e^√xπ)^(1/1)⌉^1-e^√xπ
72 8744 8744.31331302 0.31331302
88 8744 8744.07673348 0.07673348
100 8744 8743.9709886 -0.0290114 ————- 100/4 = 25 = 5^2 note: 152 not 104
148 8744 8743.999 -0.001
232 8744 8744 0
640=72+88+148+232 + 100
540=72+88+148+232
typo
no “-e^√xπ” in equation for column 2:
d(2,1/2,x)=R(2,1/2,x)-R(1,1/2,x)=⌊(e^√xπ)^(1/2)⌉^2-e^√xπ-⌊(e^√xπ)^(1/1)⌉^1
correction
d(2,1/2,x)=R(2,1/2,x)-R(1,1/2,x)=⌊(e^√xπ)^(1/2)⌉^2-⌊(e^√xπ)^(1/1)⌉^1
_
640=744-104
18 = 180 / 10 = 29-11 = average(-29,65)
18 = 1+2+3+12
35 = 1+2+3+12+17 = 13 + 22
63 = 1+2+3+12+17+28 = 10 + 13 + 18 + 22
95 = 1+2+3+12+17+28+32 = 37 + 58
158 = 10+13+18+22+37+58
553 = 657-104
1106 = 158*7 = 553*2
2212 = 158*14
4424 = 158*28 ; 28 = s(28)
29 = (3^4+4^3)/5
145 = 3^4+4^3
σ(145) = 1+5+29+145 = 180
σ(290) = 1+2+5+10+29+58+145+290 = 540
540 – 180 = 360 = σ(323) ; 323 = 17*19 = -196560+196883 ; 196883 = 47*59*71
29 = (4^3+3^4)/5
145 = 4^3+3^4
145 = 8^2+9^2
245 = 8^2+9^2+10^2
490 = p(19)
297 = p(17)
194 = σ(p(19)-p(17)) ; 193 = 490-297
36 = 19+17 = (1+2+3)^2 = average(3,5)*gcd(117,297,657)
18 = (19+17)/(19-17) = average(19,17)
9 = gcd(117,297,657) = average(19,17)/(19-17)
4 = average(3,5) = 2^2
2 = 19-17 = 5-3
290=5 * 58
15 = 5 * 3 ; 55 = 58 – 3 = 5^2 + 4^2 + 3^2 + 2^2 + 1^2
744 = (290-104)*4 = 27^2 + 15
178 = (104-15)*2
R(1,1/2,58) = 0.000034332275390625 = ⌊(e^√58π)^(1/1)⌉^1 – e^√58π
R(2,1/2,58) = 104.000034332275 = ⌊(e^√58π)^(1/2)⌉^2 – e^√58π
R(3,1/2,58) = 139560.000034332 = ⌊(e^√58π)^(1/3)⌉^3 – e^√58π
R(4,1/2,58) = 104.000034332275 = ⌊(e^√58π)^(1/4)⌉^4 – e^√58π
104 = d(2,1/2,58) = R(2,1/2,58) – R(1,1/2,58)
139560 = d(3,1/2,58) = R(3,1/2,58) – R(1,1/2,58) —————————————
104 = d(4,1/2,58) = R(4,1/2,58) – R(1,1/2,58)
1 = 22-18-13+10
2 = 10/(18-13)
3 = 13-10
4 = 22-18
5 = 18-13
6 = 18/(13-10)
12 = (22-18)*(13-10)
17 = 22+13-18
28 = 18+10
32 = 58+37-22-18-13-10
72 = 58+37-13-10
108 = 58+37+13
145 = 58+37+22+18+10
29 = ((13-10)^(22-18)+(22-18)^(13-10))/(18-13) = (3^4+4^3)/5
145 = (13-10)^(22-18)+(22-18)^(13-10) = 3^4+4^3
180 = σ(145) = 1+5+29+145
=(22-18-13+10)
+(18-13)
+((13-10)^(22-18)+(22-18)^(13-10))/(18-13)
+(13-10)^(22-18)+(22-18)^(13-10)
63 = 22+18+13+10
117 = -63+180*2^0
297 = -63+180*2^1
657 = -63+180*2^2
_ 1 2 3 7 11 19
1
2 3
3 4 5
7 8 9 10
11 12 13 14 18
19 20 21 22 26 30
supplementary
29 = √(21^2+20^2)
12 = 3 * 4 = ((13-10)*(18-13)/5) * ((18-13)*(22-18)/5) = (22-18)*(37-22)/5
8 & 9 are the only perfect powers 1 apart
145 = 64 + 81 = 8^2 + 9^2
245 = 64 + 81 +100 = 8^2 + 9^2 + 10^2
|⌊(e^√(above)π)^(1/2)⌉^2 – ⌊(e^√(above)π)^(1/1)⌉^1|
_ 1 2 3 7 11 19
1
2 6
3 6 32
7 3 71 104
11 109 104 90 104
19 419 391 104 2862 3058
|104-above|
98
98 72
101 33 0
5 0 14 0
315 287 0 2758 2954
315 = (58-37)*(37-22) = 5*(10+13+18+22)
14: Heegner index 3,5
+104
exp and 1,2,3
H(3)*H(n) n=4..8
3*7 = 21 = 58-37 = (10+13+18+22)/3
3*11 = 33 = 104-71
3*19 = 57 = 104-47
3*43 = 129; s(129) = 47
3*67 = 201; s(201) = 71
note selection
163+67 = 608-378
163*4 = s(608) = 652
s(652) = 496 = s(496)
simply differencing again and again
10
13 3
18 5 2
22 4 -1 -3
37 15 11 12 15
58 21 6 -5 -17 -32 =
(((((58-37)-(37-22))-((37-22)-(22-18)))-(((37-22)-(22-18))-((22-18)-(18-13))))-((((37-22)-(22-18))-((22-18)-(18-13)))-(((22-18)-(18-13))-((18-13)-(13-10))))) =
-1*10
+5*13
-10*18
+10*22
-5*37
+1*58
= 1314 – 1346 = -Σs(15) = -s(58)
repeat difference
absolute values for repeat sum (pascal’s triangle)
3*5 = 15 = -1*22+1*37 =
+1*10
-4*13
+6*18
-4*22
+1*37
104 hindsight: (3,5) PPT
html tag typo correction:
top*left-1
_ 8 16 32 64 128
1 7 15 31 63 127
2 15 31 63 127 255
3 23 47 95 191 383
4 31 63 127 255 511
5 39 79 159 319 639
last comparably delightful insight: equation 3
the 127, 111, 79, 47, 15 pattern is noted in a very different manner on conventional math webpages (as if to deliberately obfuscate – maybe just unhelpfully obsessive devotion to formal convention)
hindsight: developing number theory independently is feasible
link noted while cross-referencing (will be of interest to some talkshop readers)
https://en.wikipedia.org/wiki/600-cell
deeper awareness of number theory helps
sort & classify orbital patterns (e.g. anomalistic JEV clearly features 58 & 111)
scrutinize numerical methods (long list of questions raised (understatement))
generalize (beyond climate)
next several comments may appear abstract initially – and later with hindsight maybe not
This graphic from the 600-cell page is reminiscent of past discussions (from back in the nicer days before the politics devolved into weird psy-ops that make no sense) :

repeat difference
553 = – 1*1 + 8*2 – 28*3 + 56*12 – 70*17 + 56*28 – 28*32 + 8*72 – 1*108
Prime Sort of Indicator
240 =
(( – 1*1 + 5*2 – 10*12 + 10*28 – 5*117 + 1*657 ) +
( – 1*3 + 5*17 – 10*32 + 10*72 – 5*108 + 1*297 ))
/
(( – 1*1 + 5*2 – 10*12 + 10*28 – 5*117 + 1*657 ) –
( – 1*3 + 5*17 – 10*32 + 10*72 – 5*108 + 1*297 ))
pascal Σs(pell) with prime sort of indicator
239 = -1*3+5*17-10*32+10*72-5*108+1*297
240 = Σs(239) = average( 239 , 241 )
241 = -1*1+5*2-10*12+10*28-5*117+1*657
Σs(169) = 209 = 836 / 4
Σs(209) = 241
Σs(241) = 242
Σs(242) = 400 = 20^2 = 29^2-21^2 = 447-47
29 = (3^4+4^3)/5 = average(-3-4-5,20+21+29)
494 = 894-400 = ΣΦ(323)+Σφ(323)
408 = 902-494 ; ΣΦ(323) = 447 ; 47 = Σφ(323)
400 = 894-494 = ΣΦ(323)-Σφ(323)
20+21+29 = 70 ; Σs(70) = average(178,378) = 278 ; Σs(278) = 628 = 2 * 314
239 = average(70,408) = average(158,320)
Σs(239) = 240 ; Σs(240) = 100836 = ⌊657√φ⌉+100k
163 = 240 + 323 + Σφ(323) – ΣΦ(323) = ΣΦ(323) – 284
15 = 3 * 5
Σs(15) = 32
Σs(32) = 64
Σs(64) = 169
Σs(169) = 209 —- above this line is broader context
Σs(209) = 241
Σs(241) = 242
Σs(242) = 400 = 21^2 – 41 = s(2401) = σ(7^3) ; σ(σ(400)) = 993
lowest 744 levels
repeat difference (pascal)
19
28 47 ——————– 28 = s(28) isn’t Heegner but (note well) is 744
43 71 118 = 2*59
58th no. with round divisor average = 89 = 178 / 2
129th no. with round divisor average = 189 = 378 / 2
129 = 19+43+67
71 = 129 – 58
177 = 47+59+71
σ(177) = 240 ; σ(240) = 744
s(177) = s(41) = s((163+1)/4) = σ(32) = σ(Σs(15)) = 10+13+18+22 = 63 ; σ(63) = 104
3,5 twin prime pell PPT spacing
σ(104) = 7# = 210 ; σ(210) = 576 = 24^2
typo last comment: repeat sum (not difference)
s(58) = 32 = ΣΣφ(28)
σ(s(58)) = σ(32) = σ(Σs(15)) = 10+13+18+22
= s(194)-s(323) = Σs(Σs(37))-37 = 63 ; σ(63) = 104 = 657-553 ; Σδ(553) = 169
s(323) = 37
s(194) = 100 = Σs(Σs(37)) ; s(100) = s(Σs(Σs(37))) = 117
Σs(194) = Σs(496) = s(496) = 496 = s(652) = s(s(608)) = s(s(Σs(607)))
Σs(607) = 608
158 = Σs(157) = σ(157) = Σs(314/2) = 10+13+18+22+37+58
Σs(158) = 418 = 836 / 2
σ(158) = 240 = σ(209) ; σ(240) = 744
28 in divisor sum context
6 = σ(5) = 6
12 = σ(6) = σ(11)
28 = σ(12) = s(28)
56 = σ(28) = σ(39) ; 39 = σ(18)
120 = σ(56) = σ(95) ; 95 = 37+58 = 67+28
360 = σ(120) = σ(323) = σ(290)-σ(145) ; σ(145) = 180 ; σ(290) = 540
“However there are coincidences as yet unexplained, one of which concerns the number 163.”
Demystification
28 isn’t Heegner
but is 744-level
(along with top 4 Heegner nos.)
±28 +28 -28
19 47 -9
43 71 15
67 95 39
163 191 135
47 = ΣΦ(29) = ΣΦ(58) = Σφ(145) = Σφ(323)
71 = ΣΦ(41) = ΣΦ(55) = ΣΦ(1^2+2^2+3^2+4^2+5^2)
95 = 37+58
191 = ΣΦ(145) = ΣΦ(290) = Σφ(158) = ΣΦ(232)
σ(135) = 240 ; Σδ(553) = 169
ΣΣφ(135) = 104
2 * 28 = σ(28) = 56 = σ(39) ; 39 = Σδ(63) ; 63+95 = 158
ΣΣφ(9) = 8
ΣΣφ(15) = 16
ΣΣφ(28) = 32 = Σs(15) = Σs(3*5) = s(58) = Σφ(247)
247 = average(-163,657) = average(Σφ(323),ΣΦ(323))
= ΣΦ(490) ; 490 = p(19) ; 19 = x mod 24 for x=19,43,67,163
900 = 657+ΣΦ(ΣΦ(ΣΦ(71))) = 657+ΣΦ(163)
980 = 657+323
012345…
(3+4)*(5-4)+2^(0+3) = 15
(3+4)*(5-4)+2^(1+4) = 39
(3+4)*(5-4)+2^(2+5) = 135
(3+4)*(5+0)+2^(0+3) = 43
(3+4)*(5+0)+2^(1+4) = 67
(3+4)*(5+0)+2^(2+5) = 163
(3+4)*(5+4)+2^(0+3) = 71
(3+4)*(5+4)+2^(1+4) = 95
(3+4)*(5+4)+2^(2+5) = 191
“Numbers that are the sum of 4 but no fewer nonzero squares.”
“Numbers of the form 4^i*(8*j+7), i >= 0, j >= 0.”
https://oeis.org/A004215
https://oeis.org/search?q=31+63+95+127+159+191
Pell PPT 1
13-10 = 3
22-18 = 4
18-13 = 5
41 = 10+13+18 = Euler’s most lucky no.
63 = 10+13+18+22
100 = 10+13+18+22+37 ; Σδ(100) = 158
158 = 10+13+18+22+37+58
Pell PPT 2 linear combinations
22 = 2*21 – 20
37 = 5*20 – 3*21 = 100 – 63
41 = 20+21
58 = 2*29
63 = 3*21
100 = 5*20 ; Σδ(100) = 158
158 = 5*20 + 2*29 = 100 + 58
58 = perimeter difference
58 = (20+21+29) – (3+4+5) = 70 – 12 = 2 * 29
58 = (5+5)*(4+3)-(4*3)
37 = (5*5)+(4*3)*(4-3)
A000164 = A002635 – A025428
Number of partitions of n into 4 squares.
https://oeis.org/A002635
Number of partitions of n into 4 nonzero squares.
https://oeis.org/A025428
Number of partitions of n into 3 squares (allowing part zero).
https://oeis.org/A000164
_ 7 15 23 28 31
0 7 15 23 28 31
1 39 47 55 60 63
2 71 79 87 92 95
3 103 111 119 124 127
4 135 143 151 156 159
5 167 175 183 188 191
6 199 207 215 220 223
7 231 239 247 252 255
8 263 271 279 284 287
9 295 303 311 316 319
then 112+128k, 448+512k, 1792+2048k, etc. (A004215)
reorganize
_ 0 1 2 3 4 5
0 7 28 112 448 1792 7168
1 15 60 240 960 3840 15360
2 23 92 368 1472 5888 23552
3 31 124 496 1984 7936 31744
4 39 156 624 2496 9984 39936
5 47 188 752 3008 12032 48128
6 55 220 880 3520 14080 56320
7 63 252 1008 4032 16128 64512
8 71 284 1136 4544 18176 72704
9 79 316 1264 5056 20224 80896
10 87 348 1392 5568 22272 89088
https://oeis.org/search?q=7+15+23+31+39+47+55+63+71+79+87
fib & luc pattern in errors is clear:
https://en.wikipedia.org/wiki/Beatty_sequence#Examples
1001 = 1673-672 = 1638+28+6+1-672
1000 = 1673-672-1 = 1638+28+6-672
378.378 = 0.378+378 = 378*(1001/1000) = 378*(1673-672)/(1673-672-1)
32 = Σs(15) ; 15 = 5 * 3
117 = average(-8190/140,8190/28) = 2*8190/140
234 = 8190 / 28 – 8190 / 140 = 4 * 8190 / 140
h(x) = harmonic mean of divisors of x
h(x) x
1 1
2 6
3 28
5 140 ; 3,5 twin prime PPT: 4 = 140/(1+6+28) = √((h(140))^2-(h(28))^2)
5 496
6 270
7 8128
8 672
9 1638
10 6200
11 2970
15 8190
generality:
repeat binomial (pascal) converges to exponential in limit
diversify exploration
divisor sum
8744 level
σ(232) = 450
σ(148) = 266
σ(100) = 217
σ(88) = 180
σ(72) = 195
repeat difference
450
266 184
217 49 135
180 37 12 123
195 -15 52 -40 163
163 = 1*450-4*266+6*217-4*180+1*195
reverse order
195
180 15
217 -37 52
266 -49 12 40
450 -184 135 -123 163
hierarchical repeat difference
(sum bottom row with reversed order or alternating sum of diagonal with unreversed order)
21^2 = 441 = (1*450)-(1*450-1*266)+(1*450-2*266+1*217)-(1*450-3*266+3*217-1*180)+(1*450-4*266+6*217-4*180+1*195)
analogous exploration (104 level)
58
37 21
22 15 6
18 4 11 -5
13 5 -1 12 -17
10 3 2 -3 15 -32
10
13 -3
18 -5 2
22 -4 -1 3
37 -15 11 -12 15
58 -21 6 5 -17 32
63 = 10+13+18+22
63 = (1*58)-(1*58-1*37)+(1*58-2*37+1*22)-(1*58-3*37+3*22-1*18)+(1*58-4*37+6*22-4*18+1*13)-(1*58-5*37+10*22-10*18+5*13-1*10)
euler’s lucky nos. pell PPT 2
79 = 2+3+5+11+17+41 = 158 / 2 = 316 / 4
58 = 17+41 (top 2)
58 = 29 * 2
37 = (17+41)-(2+3+5+11)
21 = 2+3+5+11 (lowest 4)
21 = 63/3 = 58-37
2212 = 79 * s(28) (anomalistic JEV)
378 = (10+2*13+18)+(13+2*18+22)+(18+2*22+37)+(22+2*37+58)
378, 441, & 504 are all divisible by 63 (6, 7, 8*)
21^2 = average(378,σ(220))
random sampling of insight uniformly distributed over time
euler’s lucky divisor sums
σ(2) = 3
σ(3) = 4
σ(5) = 6
σ(11) = 12
σ(17) = 18
σ(41) = 42
odd: row sums (repeat differences built in)
3=3
3=4-1
5=6-2+1
7=12-6+4-3
9=18-6+0+4-7
11=42-24+18-18+22-29
reverse order, exclude divisor sum, & note row sums = 24
42: empty row
18: 24=24
12: 6+18=24
6: 6+0+18=24
4: 2+4-4+22=24
3: 1+1+3-7+29=27
σ(2)=3 mnemonic: 3-2=1, 27-3=24
σ(2)=3 is the 1 exception in both cases
so there’s enough to solve given either 42=σ(41) or
29 = 1*42-5*18+10*12-10*6+5*4-1*3
29 = 1*41-5*17+10*11-10*5+5*3-1*2
378 / 2 = 189 =
+(1*1)
-(1*1-1*2)
+(1*1-2*2+1*3)
-(1*1-3*2+3*3-1*7)
+(1*1-4*2+6*3-4*7+1*11)
-(1*1-5*2+10*3-10*7+5*11-1*19)
+(1*1-6*2+15*3-20*7+15*11-6*19+1*43)
-(1*1-7*2+21*3-35*7+35*11-21*19+7*43-1*67)
+(1*1-8*2+28*3-56*7+70*11-56*19+28*43-8*67+1*163)
row sums (with repeat differences built in)
1 = 1
1 = 2-1
2 = 3-1+0
3 = 7-4+3-3
4 = 11-4+0+3-6
5 = 19-8+4-4+7-13
18 = 43-24+16-12+8-1-12
55 = 67-24+0+16-28+36-37+25
216 = 163-96+72-72+88-116+152-189+214 = 3^3 + 4^3 + 5^3 = 6^3
10 = 18-5-3 = 18-5-2-1 = 18-4-3-1
13 = 18-5 = 18-3-2 = 18-4-1
18
22 = 18+4 = 18+3+1
37 = 55-18
58 = 55+3 = 55+2+1
ordered divisor sums with repeat differences
σ(10) = 18
σ(13) = 14 4
σ(18) = 39 -25 29
σ(22) = 36 3 -28 57
σ(37) = 38 -2 5 -33 90
σ(58) = 90 -52 50 -45 12 78
triangle sum:
+18
+14+4
+39-25+29
+36+3-28+57
+38-2+5-33+90
+90-52+50-45+12+78 = 378
“Numbers of the form 4^i*(8*j+7), i >= 0, j >= 0.”
https://oeis.org/A004215
4^i*(8*j+7) =
average(-316,324)^i*((324-316)*j+(323-316))
exclusively:
sum = 323 = 17*19 = 196883-196560 for σ(n) = n+1
σ(1) = 1 ≠ 1+1
σ(2) = 3
σ(3) = 4
σ(7) = 8
σ(11) = 12
σ(19) = 20
σ(43) = 44
σ(67) = 68
σ(163) = 164
inclusively:
sum = 324 = 18^2
378 = 323 + 55
316 = 163+67+43+19+11+7+3+2+1
216 = 378-(163-67)-(67-43)-(43-19)-(19-11)-(11-7)-(7-3)-(3-2)-(2-1) = 378-Φ(163)
Φ(163) = (163-67)+(67-43)+(43-19)+(19-11)+(11-7)+(7-3)+(3-2)+(2-1) = 162
104-level repeat difference
58
37 21
22 15 6
18 4 11 -5
13 5 -1 12 -17
10 3 2 -3 15 -32
sum:
+58
+37+21
+22+15+6
+18+4+11-5
+13+5-1+12-17
+10+3+2-3+15-32 = 194
prime sort of algorithm
1 = s(163) = s(67) = s(43) = s(19) = s(11) = s(7) = s(3) = s(2)
1 = s(41) = s(17) = s(11) = s(5) = s(3) = s(2)
0 = s(1) —– neither prime nor euler lucky
41 = σ(163)/4
17 = σ(67)/4
11 = σ(43)/4
5 = σ(19)/4
3 = σ(11)/4
2 = σ(7)/4
1 = σ(3)/4
320 = σ(163)+σ(67)+σ(43)+σ(19)+σ(11)+σ(7)+σ(3)
320 = 164+68+44+20+12+8+4
euler lucky (prime) only
316 = σ(163)+σ(67)+σ(43)+σ(19)+σ(11)+σ(7)
316 = 164+68+44+20+12+8
316 = 163+67+43+19+11+7+3+2+1
158 = 10+13+18+22+37+58 = 316 / 2
σ(163) = 164
σ(67) = 68
σ(43) = 44
σ(19) = 20
σ(11) = 12
σ(7) = 8
σ(3) = 4
σ(2) = 3
σ(1) = 1
prime Heegner divisor sums & their differences
484 = 164+68+44+20+12+8+4+3 + (164-68)+(68-44)+(44-20)+(20-12)+(12-8)+(8-4)+(4-3)
484 = 323 + 164-3
484 = 320 + 164 = 28+19+43+67+163+σ(163) = 324 + 160
22 = √484 = √(28+19+43+67+163+σ(163))
18 = √324 = √(average(28,19+43+67+163)+σ(163))
160 = 22^2-18^2 = average(28,19+43+67+163)
320 = 28+19+43+67+163
640 = 44^2-36^2 = 72+88+100+148+232
189 = 1*164-7*68+21*44-35*20+35*12-21*8+7*4-1*3
378 =(1*164-7*68+21*44-35*20+35*12-21*8+7*4-1*3)*2
Heegner nos. for
f(n) = σ(n)
f(n) = n
f(n) = Φ(n)
378 = f(163)+f(1)
+1*f(163)
-8*f(67)
+28*f(43)
-56*f(19)
+70*f(11)
-56*f(7)
+28*f(3)
-8*f(2)
+1*f(1)
378 / 2 = 189 =
-1*f(163)
+7*f(67)
-21*f(43)
+35*f(19)
-35*f(11)
+21*f(7)
-7*f(3)
+1*f(2)
378 / 2 = 189 =
+1*f(163)
-7*f(67)
+22*f(43)
-40*f(19)
+46*f(11)
-34*f(7)
+16*f(3)
-4*f(2)
+1*f(1)
216 =
+1*f(1)
-7*f(2)
+22*f(3)
-40*f(7)
+46*f(11)
-34*f(19)
+16*f(43)
-4*f(67)
+1*f(163)
coefficients: sum pascal’s triangle levels 1 to 9
+1 = +0+0+0+0+0+0+0+0+1
-7 = +0+0+0+0+0+0+0+1-8
+22 = +0+0+0+0+0+0+1-7+28
-40 = +0+0+0+0+0+1-6+21-56
+46 = +0+0+0+0+1-5+15-35+70
-34 = +0+0+0+1-4+10-20+35-56
+16 = +0+0+1-3+6-10+15-21+28
-4 = +0+1-2+3-4+5-6+7-8
+1 = +1-1+1-1+1-1+1-1+1
189 = 1*162-7*66+22*42-40*18+46*10-34*6+16*2-4*1+1*1
189 = 1*163-7*67+22*43-40*19+46*11-34*7+16*3-4*2+1*1
189 = 1*164-7*68+22*44-40*20+46*12-34*8+16*4-4*3+1*1
216 = 1*1-7*1+22*2-40*6+46*10-34*18+16*42-4*66+1*162
216 = 1*1-7*2+22*3-40*7+46*11-34*19+16*43-4*67+1*163
216 = 1*1-7*3+22*4-40*8+46*12-34*20+16*44-4*68+1*164
378 = 2*162-8*66+28*42-56*18+70*10-56*6+28*2-8*1+2*1
378 = 2*163-8*67+28*43-56*19+70*11-56*7+28*3-8*2+2*1
378 = 2*164-8*68+28*44-56*20+70*12-56*8+28*4-8*3+2*1
378 = 2*1-8*1+28*2-56*6+70*10-56*18+28*42-8*66+2*162
378 = 2*1-8*2+28*3-56*7+70*11-56*19+28*43-8*67+2*163
378 = 2*1-8*3+28*4-56*8+70*12-56*20+28*44-8*68+2*164
repeat sum/difference pell
303 = 1*2+5*3+10*5+10*11+5*17+1*41
303 = 1*41+5*17+10*11+10*5+5*3+1*2
335 = 1*42+5*18+10*12+10*6+5*4+1*3
335 = 1*3+5*4+10*6+10*12+5*18+1*42
σ(303) = 408
σ(335) = 408
29 = -1*3+5*4-10*6+10*12-5*18+1*42
29 = -1*2+5*3-10*5+10*11-5*17+1*41
σ(29) = 30
378 = 408-σ(29)
σ(2) = 3
σ(3) = 4
σ(5) = 6
σ(11) = 12
σ(17) = 18
σ(41) = 42
clarification
“The supersingular primes [A002267] are a subset of the Chen primes (A109611)”
“Chen primes: primes p such that p + 2 is either a prime or a semiprime. […] Contains A001359 = lesser of twin primes.”
378 = 2+3+5+7+11+13+17+19+23+29+31+41+47+59+71
+2 (for each) :
408 = 4+5+7+9+13+15+19+21+25+31+33+43+49+61+73
15 of them
+2 each
= +30 = +σ(29)