
A year after I wrote the original ‘Why Phi’ post explaining my discovery of the Fibonacci sequence links between solar system orbits and planetary synodic periods here at the Talkshop in 2013, my time and effort got diverted into politics. The majority of ongoing research into this important topic has been furthered by my co-blogger Stuart ‘Oldbrew’ Graham. Over the last eight years he has published many articles here using the ‘Why Phi’ tag looking at various subsystems of planetary and solar interaction periodicities, resonances, and their relationships with well known climatic periodicities such as the De Vries, Hallstatt, Hale and Jose cycles, as well as exoplanetary systems exhibiting the same Fibonacci-resonant arrangements.
Recently, Stuart contacted me with news of a major breakthrough in his investigations. In the space of a few hours spent making his calculator hot, major pieces of the giant jigsaw had all come together and brought ‘the big picture’ into focus. In fact, so much progress has been made that we’re not going to try to put it all into a single post. Instead, we’ll provide an overview here, and follow it up with further articles getting into greater detail.
One of the longest known climatic periods is the ~413,000 year cycle in the eccentricity of Earth’s orbit. This period has been found in various types of core sample data and discussed in many paleoclimatic science papers, along with cyclicities around 95, 112 and 124kyr, and shorter periods such as Earth’s obliquity variation, ~41Kyr and Earth’s equinoctial-precession periods of ~19 and ~23kyr. Stuart has discovered how all of these periods are related to each other and to the planetary orbits and their synodic conjunctions.
We’ve also been able to link these Earth Orientation Parameters and climatic periodicities to the planetary orbital and synodic conjunction periods which we believe are key to modulating solar activity. The basis for these were laid out in my 2011 post on Jupiter and Saturn’s motion and further developed with the valuable input of many Talkshop contributors, culminating in the solar variation models published by Rick Salvador and Ian Wilson in the 2013 special issue of Pattern Recognition in Physics.

Figure 1 below scratches the surface of what we have discovered. These relationships are all precise whole number ratios, not approximations. The red ‘Graham Cycle’ is a novel addition to previously known cyclic periods which connects the three areas of the figure; Solar-Planetary at the top, climatic periods bottom left, and Earth Orientation Parameters bottom right. Of note, are the ratios between the 60kyr Graham Cycle period and the periods in the three groups. They are mostly ratios of Fibonacci numbers or combinations of them. We know from a previous investigation that Fibonacci and phi (Golden Section) related periodicities tend to be stable and minimally resonant. It could be that the reason the 60kyr period hasn’t been found previously is due to it not showing up strongly in periodograms and other spectral analyses. Nonetheless, it’s an important period for our ‘Why Phi’ investigation and has a lot more connections than we wanted to clutter up Figure 1 with, as it already looks pretty busy!

Solar cycles
Starting with the upper ‘Solar planetary’ section of figure 1, Ian Wilson’s 2013 PRP paper noted that the Hale cycle and Jupiter-Saturn synodic (J-S) have a 193 year beat period, which is evident in Oxygen18 isotope data as well as Group Sunspot Numbers and 10Be ice core data. This was picked up by the Helmholtz Institute research lab and covered in our earlier post on the Solar Magnetic cycle. What they didn’t pick up on is the fact that the same 193year beat period can also be derived from the 178.8yr Jose cycle and the 2403yr Solar Inertial Motion (SIM) period.
This second route to the 193 year solar magnetic cycle is a novel result revealed in this post. Using the beat period formula of (A*B)/(A-B) = period, the solar inertial motion cycle (A) proposed by Charvatova of ~2403 tropical years and the Jose cycle (B) produces the same 193 year result. It was then possible to tie all this together in the 60 kyr cycle shown in the diagram.
There are 336 Jose and 25 SIM in 60 kyr which means the beat period produces 336-25 = 311 solar magnetic cycles of 193 years each. The number of Hale cycles in 60 kyr is given by the number of J-S minus the number of solar magnetic cycles. i.e. 3024-311 = 2713. It’s notable that 311 and 2713 are both prime numbers. Coupled with the fact that the number of J-S in 60Kyr is the Fibonacci multiple 144×21, we think this is a strong indicator that both 193yr and 60kyr periods are significant solar-planetary cyclic periods.
Support for the 60kyr period comes from Russia, where in 2017 A. S. Perminov and E. D. Kuznetsov produced a paper at at Ural Federal University, Yekaterinburg, entitled ‘Orbital Evolution of the Sun–Jupiter–Saturn–Uranus–Neptune Four-Planet System on Long-Time Scales’. This paper shows inter-related variations in the orbital parameters of the gas giants including antiphase changes in the eccentricities and orbital inclinations of Jupiter and Saturn at ~60kyr and in-phase changes in those parameters at ~400kyr, antiphase to Uranus. These ~400kyr variations are likely to be drivers of Earth’s 413kyr eccentricity cycle.

Original Russian Text © A.S. Perminov, E.D. Kuznetsov, 2018, published in Astronomicheskii Vestnik, 2018, Vol. 52, No. 3, pp. 239–259.
Planetary-climatic cycles
Moving on to the lower left ‘climatic and planetary cycles’ section of Figure 1,
The de Vries cycle is half of 21 J-S and is a prominent climatic cycle. It also links to other cycles through resonant harmonics: Hallstatt = 11 de Vries, J-S synodic precession cycle = 12 de Vries. 6 de Vries is 7 Jose cycles. 33 de Vries is 7 Eddy cycles. See also Why Phi? – Jupiter, Saturn and the de Vries cycle.
The lunar-terrestrial year (L-T) is 13 lunar months. Earth’s tropical year is used throughout this post. Whole numbers of both occur at 353 tropical years and 363 lunar years, forming 10 beats (363-353) of 35.3 years. An important period is 13 L-T, which is 2 Hallstatts and 11 de Vries cycle pairs (22 de Vries). This is 1/9th of the obliquity cycle. It is also 3x7x11 J-S. It follows that the 41kyr obliquity cycle is 3x7x11 Jose cycles, because the Jose cycle is 9 J-S. 3,7 and 11 are all Lucas numbers. We will post a separate article on the inter-relation of the Fibonacci and Lucas series, as they relate to orbital resonance. See also Sidorenkov and the lunar or tidal year (2016)
An explanation for the effect of the motion of the gas giants on these and other climatic periods is found in Nicola Scafetta’s 2020 paper ‘Solar Oscillations and the Orbital Invariant Inequalities of the Solar System’ discussed here at the talkshop.
EOP
At the lower right of Figure 1 we find Earth orientation parameters and associated cycles. To understand how these link to planetary periods we need to look at the motions of Jupiter and Saturn in particular. Kepler gives us this useful graphic in his book De Stella Nova (1606).

From an earlier post: ‘As successive great conjunctions occur nearly 120° apart, their appearances form a triangular pattern. In a series every fourth conjunction returns after some 59.8 years to the vicinity of the first. These returns are observed to be shifted by some 7–8°’. Wikipedia. [2019 version]. After 3 J-S the conjunctions have nearly described an exact triangle, but the start position has moved (precessed) slightly, by 60/7 degrees of precession of the J-S conjunction axis. It takes 42 of those (42*3 J-S) to complete the precession cycle in 2503 years. (41×61.051 y = 41×360 degrees movement of the axis).
The 413kyr eccentricity cycle is equivalent to 55*3 of these J-S synodic precession periods, and 6765 or 55×123 (Fibonacci and Lucas numbers) of the 61.051 360 degree periods. Additionally 413 kyr = 10 obliquity periods.
In the brown triangle: the 19 kyr and 23 kyr periods have a beat period of the 112kyr perihelion precession.
23 kyr is 10 Hallstatt cycles.
In the blue triangle: the 95 kyr (5×19 kyr) and 124 kyr (3 obliquities) have a beat period of 413 kyr i.e. Earth’s eccentricity cycle (mentioned in various research papers). Since our 95 kyr = 353×270 and our 124 kyr = 353×351, we find: (351×270) / (351-270) = 1170, and 1170*353 = 413010 years (the obliquity period).
Discussion
The 95 and 124kyr eccentricity cycles are linked with glacial periods. From Park and Maarsch (1993) paper ‘Plio—Pleistocene time evolution of the 100-kyr cycle in marine paleoclimate records’: “The DSDP 607 time scale is more favorable to an abrupt jump in amplitude for the 95-kyr δ18O envelope, but not in the 124-kyr envelope. Rather, long-period δ18O fluctuations appear phase-locked with the 124-kyr eccentricity cycle some 300-400 kyr prior to its growth in amplitude and phase-lock with the 95-kyr eccentricity cycle in the late Pleistocene.” Because the 124kyr period is 3x41kyr (obliquity period), this may help explain the change from glacial periods around 41kyr to around 100kyr.
The bi-modality of glacial cycles and the 95 and 124kyr cycles is one of the modes of variation mirrored between celestial cyclic motion and Earth climatic events. There are also many periods which are ‘quasi-cyclic’ and vary in length within bounds whose attractor nodes fit our phi-Fibonacci scheme. We are not claiming to have elucidated a deterministic and predictable system with our precise whole-number orbitally resonant ratios. We are offering this scheme as a potentially useful roadmap for further investigations into the intriguing numerical links between planetary orbits, synodic timings, planar inclinations, eccentricities, energy transfers and other celestial mechanical and orientation data.
As an example of how our scheme links shorter to longer term cycles, there are exactly 9 Jupiter Saturn conjunctions in the period of the Jose cycle of 178.8 years. There are 55x21x2 Jose cycles in the 413kyr eccentricity period. Experienced researchers like Paul Vaughan will immediately see that this product of multiple Fibonacci numbers resolves to the product of the first 6 prime numbers 1,2,3,5,7,11.
The solar system is organised by the forces of gravity and electro-magnetism into a log-normal distribution of which the Fibonacci series and Lucas series are examples which maintain the stability of the system. Resonance is minimised, but also utilised to transfer energy between orbits in order to resolve inequalities through resonance-forced changes to the eccentricity and inclination of orbits. These changes give rise to the cyclic changes in climatic factors on Earth observed at all timescales from the ~22yr Hale and ~60yr J-S trigon to the ~100kyr and 413kyr glaciation in core sample data and other indices.
Data sources and acknowledgements
Planetary data used is from NASA JPL which gives the Seidelmann values for orbital periods. Our thanks to Paul Vaughan for insisting on their use.
The periods we have calculated can all be reproduced using the ratios we have provided on Figure 1 and the NASA JPL values for the Jupiter, Saturn and Uranus orbital periods.
“[…] long-periodic astronomical phenomena whose records we succeeded to find in the Dresden Codex – a synchrony of Venusian heliacal risings with solar eclipses (interval of about 132 years) […]” — 2013 dating of Mayan Calendar using long-periodic astronomical phenomena in Dresden Codex
132 year review
climate exploration nostalgia: “line-of-nodes and line-of-apsides coincide every six years,
the points in the lunar orbit at which these coincidences occur are not necessarily aligned with the
positions of the Full Moon and New Moon […] point of alignment slowly rotates with
respect the New Moon/Full Moon line, only producing a grand alignment once every 66 years”
(p.22)
crude (can be refined) preliminary check on Horizons:
2319.0467418165 = 1/(1/11.8618572921452-3/29.4567725360326+1/84.02044892998+1/164.753642595886)
planning further diagnostics
phase (in pi radians) and cosine
CO[U-N?]T
sea cure IT?
in sol ace sh!one:
Capt. Dove 8˚North
with allure misst knew miracle myth OD
No.SSTallGaia Vlad dove US talk:
“just tag URL in the” (no doubt!!! laugh-T) “www!hiRled”
rush in 60 seconds = 1 minute peace folk us putting_6 dovetail write side [“dull Mn“] up “like 36” for goal post-h***stat*
=
Horizons On-Line System News
January 26, 2022
— Fourteen Saturnian satellites were updated to the new SAT441L solution
from R. Jacobson (JPL): 601-609, 612-614, 632, and 634, along with
planet-center 699.
=
“T weed dull dumb there snow CO[]MPairus[]UN” mathematic ally know doubt reference frame sporadic(except sh!U-N)ally
171.406220601552 = beat(164.791315640078,84.016845922161)
16.9122914926352 = harmean(29.4474984673838,11.8626151546089)
18.7636626447678 = beat(171.406220601552,16.9122914926352)
338.432743555958 = slip(19.8650360864628,18.7636626447678)
4622.9545388013 = slip(338.432743555958,9.93251804323141)
2311.47726940065 = slip(338.432743555958,4.9662590216157) —— ll.07 = 166/2/07 ?
178.006192198129 = beat(4622.9545388013,171.406220601552)
4622.52465229533 = (e^√(19*2π) – ⌊√(e^√(19*2π))⌉^2) / (⌊√(e^√(19*π))⌉^2 – e^√(19π))
2311.26232614767 = 4622.52465229533 / 2 ———————— no doubt
178.000120709909 = beat(4622.52465229533,171.4) —————– B’S at turn
49000.79211442 = beat(208.886643858907,207.999955892563)—-(in!)000MOC˚K˚CRown
more ID?
y’know 11over
turn in “sure!”cue11aceU-N
sew sea & iceburg in NO?
SAM muck ably (in can’TA11key)
11.071

22.142
44.284; 284 = s(220)
“your rule of thumb makes me worry some“ — no doubt
“on average” ? …..know doubt:
11.0693… = 33.208 / 3
(0+11.86+11.86+11.86+11.86+11.86+11.86+11.86+11.86+11.86+11.86+11.86+11.86+11.86+11.86)/15
Suggest Dove 0.0744 Puzzle Peace
2545.40891524211 = √2*harmean(1470,5*(11.86-(19+43+67+163+28)*(0.07)^2/2)+191*11.86)
1799.87590486039 = harmean(1470,5*(11.86-(19+43+67+163+28)*(0.07)^2/2)+191*11.86)
2320.64 = 5*(11.86-(19+43+67+163+28)*(0.07)^2/2)+191*11.86
11.84 = (5*(11.86-(19+43+67+163+28)*(0.07)^2/2)+191*11.86)/(5+191)
s(1210) = 1184 — nos.
s(1184) = 1210 — amicable
11^2 = 121
76 = 19 mod 24 + 43 mod 24 + 67 mod 24 + 163 mod 24
Seidelmann (1992) mean elements from tropical (mislabelled sidereal) & synodic (Table 15.6).
25407.7660910075 = beat(0.240846733026329,0.24084445)
25729.7982184441 = beat(0.615197278962733,0.61518257)
25684.2432466089 = beat(1.00001755422766,0.99997862) —- sidereal est. from harmean of others
25760.4321570756 = beat(1.88084836649705,1.88071105)
25691.0410103856 = beat(11.8619993833167,11.85652502)
25754.8216760853 = beat(29.4571726091513,29.42351935)
25699.0740448472 = beat(84.021212742844,83.74740682)
25757.04141984 = beat(164.770559417647,163.7232045)
25677.6970524456 = beat(250.439797262174,248.0208)
Earth is left blank in the synodic column, but diagnostics suggest the EMB Keplerian sidereal period 1.00001743371442 (Table 5.8.1) was used to balance k ~= 25685. Treat 1.00001755422766 as a question inviting deep scrutiny.
25721.8900031954 = 360*60*60/50.3851
perusing consensus history
before-adjustment value for comparison:
25771.4533429313 = 360*60*60/50.2882
–
from old reference frame pub.
Earth-Venus
241.155400410678 = 88082.01 / 365.25
Jupiter-Saturn
853.993867214237 = 311921.26 / 365.25
336.051413467044 = beat(853.993867214237,241.155400410678)
84.012853366761 = 336.051413467044 / 4
854.011006160164 = 311927.52 / 365.25
336.048759632077 = beat(854.011006160164,241.155400410678)
84.0121899080192 = 336.048759632077 / 4
84.0120465434634 = 1/U —– NASA “factsheet”
never saw that one pointed out before
compare-and-contrast (as a botanisst wood) supplementary
k = “p_A” in those tables
can’t just trust astronomy summaries — e.g. notation isn’t defined, models are mixed, etc.
need to check
found they mixed ~Williams J & S mean elements with ~Seidelmann Keplerian E & V
19.8588772513307 = beat(29.4571389459274,11.8619822039699)
60.9470469878813 = slip(29.4571389459274,11.8619822039699)
883.192112166325 = slip(60.9470469878813,19.8588772513307)
853.83263208956 = axial(25685,883.192112166325)
853.873341278472 = axial(25721.8900031954,883.192112166325)
853.92785846215 = axial(25771.4533429313,883.192112166325)
0.995849084939309 = beat(0.615197263396975/8,1.00001743371442/12)
241.147989898212 = beat(0.999978614647502,0.995849084939309)
usefully suggestive but underscores:
authors aren’t clear on (sometimes mixed) definitions & models
sew: carefully diagnose, sort, classify shape-shifting morphology comparatively
notation link — & a link from there:
Park, Ryan S.; Folkner, William M.; Williams, James G.; Boggs, Dale H. (2021). “The JPL Planetary and Lunar Ephemerides DE440 and DE441“. The Astronomical Journal. 161 (3): 105.
I used to think it was ridiculous to take measurements of model features to deduce mean model parameters. However, a lot of forensic diagnostic trouble is resulting from other authors’ summaries.
I have a big study in mind — measuring with generalized wavelets in diverse reference frames to explore why mainstream authors are missing simple, key constraints when estimating central limits.
Generalized wavelets — to be neither confused nor conflated with conventional wavelets — subsume other period estimation methods.
some quick notes
1/E sidereal
365.256 days Williams — diagnostics are making it look “too rounded-off”
365.256367664193 Seidelmann
25763.987503107 = beat(1.00001743371442,0.99997862)
compare: fraction-of-a-year difference at link vs. 50 year JPL k correction (LNC,LLR) above
review: replace φ with 240 (E8) in Schneider’s classic equation:
1.00001743390371 = (1-(1/240)^1)^(0/1)/(1-(1/240)^2)^(2/2)/(1-(1/240)^3)^(3/3)/(1-(1/240)^4)^(2/4)/(1-(1/240)^5)^(5/5)/(1-(1/240)^6)^(1/6)
Let us find peace and tranquility.
~midpoint dates of “solar derailment” from “jupiter groove”
2nd column = step size since last
1BC moved to 0
gap between 2 noteworthy pairs of events spaced ~39 years apart:
4627.16666666667 = (-2278.94444444444) – (-6906.11111111111)
~1727.2 review
a bit choppy with monthly output (horizons ICRF jovian barycenters & SSB)
column:variable
A:date
B:x_J
C:y_J
D:x_sun
E:y_sun
F:
leave F1 blank
enter in cell F2
=MOD(AVERAGE(MOD(ATAN2(B1,C1)/PI()-ATAN2(B2,C2)/PI()+1,2)-1,MOD(-ATAN2(D1,E1)/PI()+ATAN2(D2,E2)/PI()+1,2)-1)+1,2)-1
copy/paste down column F
G:integrate column F
H:round off column G
dates of discrete steps (of 1) in column H give summary above
correction
B:x_sun
C:y_sun
D:x_J
E:y_J
typo above:
” 4622.52465229533 = (e^√(19*2π) – ⌊√(e^√(19*2π))⌉^2) / (⌊√(e^√(19*π))⌉^2 – e^√(19π)) “
should read:
4622.52465229533 = (e^√(19*2)π – ⌊√(e^√(19*2)π)⌉^2) / (⌊√(e^√(19)π)⌉^2 – e^√(19)π)
4622.52465229533=(exp(1)^((19*2)^(1/2)*pi())-round((exp(1)^((19*2)^(1/2)*pi()))^(1/2),0)^2)/(round((exp(1)^((19)^(1/2)*pi()))^(1/2),0)^2-exp(1)^((19)^(1/2)*pi()))
Long Jump Track
typo nostalgia no doubt peacefully writes too vague SST left know how?
2311.26232614767 = 4622.52465229533 / 2
2313.52777777778 = 4627.05555555556 / 2
2360310.64278926 = beat(2313.52777777778,2311.26232614767)
2360489.30437277 = 2/(1/(φ^22+1/11)^(e/11+1/22)-1/ln(163*67*43*19*11*7*3*2*1))
405375.147994516 = 1/((1/(φ^22+1/11)^(e/11+1/22)-1/ln(163*67*43*19*11*7*3*2*1))/2+1/271/43/7/3/2)
2313.52760614138 = beat(2360489.30437277,2311.26232614767)
4627.05521228277 = 2313.52760614138 / 2
visually notice ~62k longitude drift cycle
4627 = (-7621.36111111111) – (-2994.36111111111)
4627 = (-6945.02777777778) – (-2318.02777777778)
4627 = (-2994.36111111111) – (1632.63888888889)
4627 = (-2318.02777777778) – (2308.97222222222)
4627.16666666667 = (1632.63888888889) – (6259.80555555556)
4627.16666666667 = (2308.97222222222) – (6936.13888888889)
4627.05555555556 = average (with monthly resolution model sampling)
2403.15249392055 = beat(62033.6579963371,2313.52760614138)
2403.15253519605 = beat(62033.7538930916,2313.52777777778)
5000.00255456061 = beat(62033.6579963371,4627.05521228277)
5000.00233239882 = beat(62033.7538930916,4627.05555555556)
˚Ti.e.Gores tribe swan N/A f(11)ear US?
refininin’ “math or myth?” crude mystery USing˚T(able) :
65972.0774235673 = 4627/average(0.118785930341576,-(-0.0214855354269731))
65737.3979559194 = 4627/average(0.150143934714772,-0.00937170630674525)
66229.0477160309 = 4627/average(0.258513139461028,-0.118785930341576)
66400.5161326476 = 4627/average(0.289510321287933,-0.150143934714772)
55846.6742229939 = 4627.16666666667/average(0.424222798309845,-0.258513139461028)
54686.1685052325 = 4627.16666666667/average(0.458736536733029,-0.289510321287933)
62033.7538930916 = harmean
less sun?
off ice yell parameters
Mask wear?
as model snow doubt “amiMa[˚K]in’MI’$elf…C11ear?”
If IT could IT wood “bury center” …sew let US find peace and tranquility instead ˚f(Be˚in˚) divided and conquereadbuyMSM PR˚script sh!…
More orders available for central limit leveraging (beyond the 8 points that first caught attention).
4626.91666666667 = (-4502.44444444444) – (-9129.36111111111)
4626.91666666667 = (-4323.52777777778) – (-8950.44444444445)
4627 = (-2994.36111111111) – (-7621.36111111111)
4627 = (-2815.69444444444) – (-7442.69444444444)
4627 = (-2636.86111111111) – (-7263.86111111111)
4627 = (-2457.94444444444) – (-7084.94444444444)
4627 = (-2318.02777777778) – (-6945.02777777778)
4627.16666666667 = (-2278.94444444444) – (-6906.11111111111)
4627 = (-2139.27777777778) – (-6766.27777777778)
4627 = (-1960.44444444444) – (-6587.44444444444)
4627 = (-54.3611111111111) – (-4681.36111111111)
4627 = (124.555555555556) – (-4502.44444444444)
4627 = (303.472222222222) – (-4323.52777777778)
4627 = (1632.63888888889) – (-2994.36111111111)
4627 = (1811.30555555556) – (-2815.69444444444)
4627.08333333333 = (1990.22222222222) – (-2636.86111111111)
4627.16666666667 = (2169.22222222222) – (-2457.94444444444)
4627 = (2308.97222222222) – (-2318.02777777778)
4627.08333333333 = (2487.80555555556) – (-2139.27777777778)
4627.08333333333 = (2666.63888888889) – (-1960.44444444444)
4627.08333333333 = (4393.88888888889) – (-233.194444444444)
4627.08333333333 = (4572.72222222222) – (-54.3611111111111)
4627.08333333333 = (4751.63888888889) – (124.555555555556)
4627.08333333333 = (4930.55555555556) – (303.472222222222)
4627.08333333333 = (5109.38888888889) – (482.305555555556)
4627.16666666667 = (6259.80555555556) – (1632.63888888889)
4627.25 = (6438.55555555556) – (1811.30555555556)
4627.25 = (6617.47222222222) – (1990.22222222222)
4627.33333333333 = (6796.55555555556) – (2169.22222222222)
4627.16666666667 = (6936.13888888889) – (2308.97222222222)
4627.16666666667 = (7114.97222222222) – (2487.80555555556)
4627.16666666667 = (9021.05555555555) – (4393.88888888889)
4627.16666666667 = (9199.88888888889) – (4572.72222222222)
4627.08333333333 = (9378.72222222222) – (4751.63888888889)
4627.08333333333 = (9557.63888888889) – (4930.55555555556)
4627.08333333333 = (9876.38888888889) – (5249.30555555556)
4627.0763870233 = harmean
60891.850424131 = harmean
To refine beyond crude suggestions, try sampling the NASA JPL model more frequently than monthly near the critical dates (21st of months used here).
refined crude summary
2313.53819351165 = 4627.0763870233 / 2
2404.91090073075 = beat(60891.850424131,2313.53819351165)
2404.89946055601 = beat(60891.850424131,2313.52760614138)
5007.59574851986 = beat(60891.850424131,4627.0763870233)
5007.57094786665 = beat(60891.850424131,4627.05521228277)
2503.79787425993 = 5007.59574851986 / 2
2503.78547393333 = 5007.57094786665 / 2
60891.8504241311 = beat(2503.79787425993,2404.91090073075)
60891.850424131 = beat(2503.78547393333,2404.89946055601)
Recognize this?
8600.60617512082 = harmean(60891.850424131,4627.0763870233)
8600.56959601988 = harmean(60891.850424131,4627.05521228277)
“8600” …with “6441”
Seidelmann 1992
tropical
19.8588720868409 = beat(29.42351935,11.85652502)
61.0914225103732 = slip(29.42351935,11.85652502)
800.898956784996 = slip(61.0914225103732,19.8588720868409)
sidereal from synodic (NOT Keplerian)
19.8589101021728 = beat(29.4571726091513,11.8619993833167)
60.9472122984759 = slip(29.4571726091513,11.8619993833167)
883.152947004205 = slip(60.9472122984759,19.8589101021728)
8599.1727824054 = beat(883.152947004205,800.898956784996)
substituting Williams’ tropical “means” :
19.8588772513307 = beat(29.4571389459274,11.8619822039699)
60.9470469878813 = slip(29.4571389459274,11.8619822039699)
883.192112166325 = slip(60.9470469878813,19.8588772513307)
8600.85489073177 = beat(883.152947004205,800.91354556689)
with Williams sidereal & tropical:
19.8588772513307 = beat(29.4571389459274,11.8619822039699)
60.9470469878813 = slip(29.4571389459274,11.8619822039699)
883.192112166325 = slip(60.9470469878813,19.8588772513307)
8597.14206514499 = beat(883.192112166325,800.91354556689)
and using that some might see where some other ideas came from, k?…
6441.18426216303 = axial(25685,8597.14206514499) ……….no doubt!
Note weather myth and math, together comparatively.
Instead of savagely, relentlessly, & viciously harassing curious, innocent, nature-loving explorers a decade ago, “experts” could have simply said:
mod(average(mod(atan2(B1,C1)/pi()-atan2(B2,C2)/pi()+1,2)-1,mod(-atan2(D1,E1)/pi()+atan2(D2,E2)/pi()+1,2)-1)+1,2)-1
peace together clear aggregation criteria
no matter the aggregation criteria, they can be stated mathematically
same for relations between different aggregation criteria
compare and contrast diversity of models
sort and classify features comparatively (like botanist developing taxonomic key)
discourse stalled decades by
narrative spin agents opaquely mixing different models & aggregation criteria
left with feasible impression for right team with sufficient resources:
automation of precise ephemeride model intercomparison diagnostics (no doubt has 405 applications…)
Seidelmann (1992) tropical with LLR-based k:
11.8619928147296 = beat(25721.8900031954,11.85652502)
29.4572157446799 = beat(25721.8900031954,29.42351935)
19.8588720868409 = beat(29.4572157446799,11.8619928147296)
60.9466695881755 = slip(29.4572157446799,11.8619928147296)
883.419711511591 = slip(60.9466695881755,19.8588720868409)
883.419711511591 = harmean(883.710029359836,883.129584352078)
19.8588720868409 = beat(29.42351935,11.85652502)
61.0914225103732 = slip(29.42351935,11.85652502)
800.898956784996 = slip(61.0914225103732,19.8588720868409)
441.709855755795 = 883.419711511591 / 2
883.710029359836 = beat(883.129584352078,441.709855755795)
2313.58289306322 = 883.710029359836 * φφ
4627.16578612644 = 2313.58289306322 * 2
crude mnemonic trick to assist recall (φ,2,42,43,71,84,100) :
441.564792176039 = beat(8600,420) ———————— 8600 = 43*(378-178)
883.129584352078 = 2 * 441.564792176039
800.886917960089 = harmean(8600,420)
8600 = beat(883.129584352078,800.886917960089)
420 = axial(883.129584352078,800.886917960089)
840 = harmean(883.129584352078,800.886917960089)
1420000 = 2 * 71 * 100^2
883.679164079454 = beat(1420000,883.129584352078)
2313.50208671011 = 883.679164079454 * φφ
4627.00417342021 = 2313.50208671011 * 2
tricky thing about last 2 comments?
mixed aggregation criteria (user ‘nevermind IT’ hazard so rightly-left best as side)
Select Barycentric Detail
4627.26 = 209*22.14
4627.0962773767 = 209*φ(φφ)^e
4627.09938493153 = 209*(φ^22+1/11)^(e/11+1/22)
4627.18618248315 = 209*ln(163*67*43*19*11*7*3*2*1)
according to Williams’ “factsheet” :
4627.20054512577 = 209 * φφ / (J+S) = 209 * 22.1397155269176= 209 * φφ * 8.45661883002872
4627.13699402865 = 209 / (3V-5E+2J) = 209 * 22.1394114546826
64k answer no doubt “too reference frame”
according to Williams’ “factsheet” :
22.1394114546826 — jev-
18.0042929108891 — sev-
10.0369907682676 — uev-
8.98466169603683 — nev-
6.39987970183041 — jsev+
A: 4627.20054512577 / each of these
B: round-off each
B/A for each
harmean = 0.999978565343834 = 365.242170991835 days — compare with:
tropical = 0.999978614647502 = 365.242189 / 365.25 (Meeus)
Repeat the calculations with all the same values, except substitute “Seidelmann (1992) sidereal“:
22.1369448465182
18.0059244891283
10.0374978119762
8.98506798919295
6.40008584740693
0.999999991983752 = 365.249997072065 days = harmean of B/A list
1 julian year = 365.25 days
explore tie-in with longitude drift (blue dots graph) above:
60876.0000002838 = beat(1.00001642710472,1)
36163.6011172769 = harmean(60876.0000002838,25721.8900031954) —- k from LLR
36127.1256108909 = harmean(60876.0000002838,25685) ——— k
36133.4834429326 = beat(29.4474984673838,29.42351935) —– Seidelmann (1992) tropical
18066.7417214663 = 36133.4834429326 / 2
25691.4278186716 = beat(60876.0000002838,18066.7417214663) — within bounds & near k
8600.66250323489 = harmean(60876.0000002838,4627.20054512577)
800.944087641983 = axial(8600.66250323489,883.192112166325) —- compare with:
800.91354556689 —- Seidelmann (1992) tropical
interpretation:
CLT retrieves k balance constraint from “mean” (not truly mean) “expert” aggregation
typo: “0.999999991983752 = 365.249997072065 days = harmean of B/A list”
it’s A/B for this case
improved documentation on the NASA “factsheet” pages (including sources) could potentially eliminate some of the diagnostic & interpretive tedium — but even if it appears I’m inclining towards careful model exploration with generalized wavelet (&/or angle differintegrals) to work around ambiguities (absolutely shouldn’t be necessary given vast time & resource differential)
flipping aggregation around the other way (i.e. B/A) :
1.00000000369856 = 365.2500013509 days
it would certainly be helpful to have the source for “365.256” (to clarify aggregation & truncation methods, rather than having to do tedious forensic diagnostics to work backwards to them)
that’s with harmean, so equal with average
no doubt such a boring (but necessary) analysis i’m falling asleep
Mayan Credit No Doubt
“Serpent” no. = 15009.1608487337
25673.4038500704 = beat(36133.4834429326,15009.1608487337)
20986.6183290126 = beat(25673.4038500704,11547.3140098413)
60977.4364403431 = beat(25673.4038500704,18066.7417214663)
(blue dot longitude drift)
32000.1001653059 = beat(60977.4364403431,20986.6183290126)
review links: _1_, _2_
clear after a quick review compiling from different sources:
20978.8759312685 = beat(25685,11547.3140098413)
20954.32984611 = beat(25721.8900031954,11547.3140098413)
20934.9357937308 = beat(1.00002638193018,0.999978614647502)
20937.2820046388 = beat(1.00002638193018,0.99997862)
20710.5713193904 = beat(1.00002638193018,0.999978097193703)
60912.1198244773 = beat(25685,18066.7417214663)
60705.6488226157 = beat(25721.8900031954,18066.7417214663)
32000.1001653058 = beat(60912.1198244773,20978.8759312685)
32000.1001653059 = beat(60705.6488226157,20954.32984611)
J direction’s opposite (compare frequency coefficient sign pattern)
to S,U,N in XEV relations where X=J,S,U,N (stuff we covered long, long ago)
Refinement’s no doubt possible, but to first order that further clarifies ingredients needed to translate Seidelmann’s (1992) Keplerian framing to Williams’ “factsheets”, Horizons output, & Seidelmann’s (1992) “synodic”.
supplementary
1.00002623256874 = beat(20978.8759312685,0.999978565343834)
1.00002628840921 = beat(20954.32984611,0.999978565343834)
1.00002633262181 = beat(20934.9357937308,0.999978565343834)
1.0000263272688 = beat(20937.2820046388,0.999978565343834)
1.00002685012553 = beat(20710.5713193904,0.999978565343834)
1.00002638193018 —- anomalistic year period (from 1 source)
answer to 64k question:
Mayan wheel reinvention no doubt
Hale
Stat
Ice Sun how http://www..
Recall 2545 ≠ 2318 ~= 2320 motivated this tedious Halstatt diagnostic side-trail.
Side-benefit of the exercise: clearly noted 4627 events distinct from 2318 ~= 2320 orbitally invariant “means”. (still need superior “means” to diagnose around 2318 ~= 2320)
From different aggregation criteria arise summaries with different mathematical properties. It is necessary to develop understanding of the distinctions to make sense of conflicting quantities countless commentators have mixed into the discourse for decades — mixing different models and different reference frames into the discourse weather ignorantly, deceptively, and/or otherwise, with apparent inattention to nuanced interpretive distinctions.
The NASA rep to whom I wrote (with all necessary details) apparently failed to appreciate (or showed no indication of recognizing) the 64k question (rightly left veiled).
“[…] claimed U.S. President Dwight D. Eisenhower himself did not want to be disturbed while the show was on […]”
My suggestion is educational unity (weather myth or math) with developing hindsight as follows:
Surrender exclusive framing to promote democratic inclusivity. Certainly NASA (or some other well-funded agency) has the “means” to support more efficient (& surely harassment-free) discourse.
white-collar Discourse Crystallization framing above ^
–hybrid–
hears the blue-CO[II]air Fram U-N v
folk cuss no doubt Diss Curse
C R US Ta11 ice-ace sh!own
‘22 need all timin’docs MET
trick “believe” IT
or[well k]not observes
“209 moment” of sc11U-N*zz…
(oversatiatation no doubt; video CHALKED FULL of carefully time-indexed mnemonic orbital#theory)
White AND blue collar folk US invariant peace (2320~=2318) * 2 weather left and write 4627.
As noted above:
25721.8900031954 = 360*60*60/50.3851
before-adjustment value for comparison:
25771.4533429313 = 360*60*60/50.2882 ———————————————————— NOTICE
diagnosing (a) Seidelmann Keplerian vs. (b) Williams “factsheet” “means”
222314.53951386 = beat(11.8626151546089,11.8619822039699)
25771.8797028462 = beat(222314.53951386,23094.6280196825) ————————– J
20921.2705663812 = axial(222314.53951386,23094.6280196825)
89978.8376726197 = beat(29.4571389459274,29.4474984673838)
60381.2322858743 = beat(89978.8376726197,36133.4834429326)
25780.5804579468 = axial(89978.8376726197,36133.4834429326) ———————— S
25776.2293461625 = harmean(25780.5804579468,25771.8797028462) ———————– J&S
thus deduce conversions from (a) to (b) …
222346.270902445 = beat(25771.4533429313,23094.6280196825)
11.8619822942945 = axial(222346.270902445,11.8626151546089)
11.8619822039699
89867.7550325788 = beat(36133.4834429326,25771.4533429313)
29.4571508661187 = beat(89867.7550325788,29.4474984673838)
29.4571389459274
… and conversions vice versa :
11.8626150642747 = beat(222346.270902445,11.8619822039699)
11.8626151546089
29.4474865550032 = axial(89867.7550325788,29.4571389459274)
29.4474984673838
??sh!in!Clue sieve SOSlieIT?
Next compare Seidelmann Keplerian with Seidelmann “synodic”.
228517.20342556 = beat(11.8626151546089,11.8619993833167)
25691.0410103856 = beat(228517.20342556,23094.6280196825)
20974.8475614111 = axial(228517.20342556,23094.6280196825)
89665.8397310115 = beat(29.4571726091513,29.4474984673838)
60523.006270857 = beat(89665.8397310115,36133.4834429326)
25754.8216760853 = axial(89665.8397310115,36133.4834429326)
25722.8918067878 = harmean(25754.8216760853,25691.0410103856)
Recognize ~LNC-adjusted k (~25722) based on LLR.
Note well that this is becoming a true peace of work with no doubt.
˚T UN in’ IT in with queen11y nos.
Seidelmann’92 tropical & Keplerian sidereal
26114.2236547808 = beat(84.016845922161,83.74740682)
25259.6956047041 = beat(164.791315640078,163.7232045)
771931.758604905 = beat(26114.2236547808,25259.6956047041)
25679.8527338808 = harmean(26114.2236547808,25259.6956047041)
23094.6280196825 = beat(11.8626151546089,11.85652502)
36133.4834429326 = beat(29.4474984673838,29.42351935)
64000.2003306117 = beat(36133.4834429326,23094.6280196825)
59100.2493255391 = axial(771931.758604905,64000.2003306117)
59100 = 64k – 70^2
70 = √4900 = √(64k – 59100)
64000.2 = 64000 + 1/5
59100.25 = (64000 + 1/5) – (70^2 – 1/20) = 64000 – 70^2 + 1/4
Why sing? Peace inClue sov. 11y.
Parameter set mismatches may seem puzzling initially, but careful diagnostics clarify relations.
Some examples have been noted above.
Seidelmann’s tropical relates to Keplerian & synodic sidereal as follows:
11.85652502
11.8565248071438 = 1/(+0.5/64000.2+1/25721.8900031954+0.5/11.8626151546089-0.5/29.4474984673838+0.5/11.8619993833167+0.5/29.4571726091513)
29.42351935
29.4235180391966 = 1/(-0.5/64000.2+1/25721.8900031954-0.5/11.8626151546089+0.5/29.4474984673838+0.5/11.8619993833167+0.5/29.4571726091513)
83.74740682
83.7473417981136 = 1/(+0.5/64000.2-0.5/59100.25+1/25721.8900031954+0.5/84.016845922161-0.5/164.791315640078+0.5/84.021212742844+0.5/164.770559417647)
163.7232045
163.722956001282 = 1/(-0.5/64000.2+0.5/59100.25+1/25721.8900031954-0.5/84.016845922161+0.5/164.791315640078+0.5/84.021212742844+0.5/164.770559417647)
thought this was already noted:
25699.0740448472 = beat(84.021212742844,83.74740682)
25757.04141984 = beat(164.770559417647,163.7232045)
25728.0250810588 = harmean(25757.04141984,25699.0740448472)
25771 vs. 25721 sorts by context
translating (b) to (a) gives some noteworthy tweaks:
835.499521684417 = slip(61.0465822533736,19.8650412541591)
2938.33144181534 = slip(504.264086710815,131.717210113846)
2938.33144181488 = slip(356.573966040843,50.0711015696908)
1469.16572090767 = slip(504.264086710815,65.8586050569228)
979.443813938687 = slip(304.366068147897,131.717210113846)
supplementary:
divisors of 1671: 1, 3, 557, 1671
1671 = 2 * 835.5
EUrope
LoSST
..and found:
2545=ΣΣδ(220)’samicably “heavy ‘pettin'” Ha!stat˚T˚˚missh__˚˚
“The
SSTorrery
of US:
ITa11waySSTarts the same” – lg
Found
Peace
2 equations
..and too UN owns
CO[www]buoy surely roads weather
ferry yore? we11bridge
11.8626151546089
11.8626147284818 = 1/(-1/64000.2+2/25721.8900031954+1/29.4474984673838-2/29.42351935+1/11.8619993833167+1/29.4571726091513)
29.4474984673838
29.4474958413624 = 1/(+1/64000.2+2/25721.8900031954+1/11.8626151546089-2/11.85652502+1/11.8619993833167+1/29.4571726091513)
axial frame
sh! own long ago
0.000000000000 = % error
???0LA!SSTurgeUN0we[]D-out
11.8626131311487 = 1/(-1/64000.2+2/25771.4533429313+1/29.4474984673838-2/29.42351935+1/11.8619822039699+1/29.4571389459274)
11.8626135250709 = 1/(-1/64000.2+2/25771.4533429313+1/29.4474984673838-2/29.4235181382615+1/11.8619822039699+1/29.4571389459274)
11.8626151546089
–
29.447485998276 = 1/(+1/64000.2+2/25771.4533429313+1/11.8626151546089-2/11.85652502+1/11.8619822039699+1/29.4571389459274)
29.4474984673838
29.4475117889182 = 1/(+1/64000.2+2/25771.4533429313+1/11.8626151546089-2/11.8565229295003+1/11.8619822039699+1/29.4571389459274)
Reference Frame Know Doubt
Williams “factsheet” tropical & sidereal:
25762.0064305964 = beat(11.8619822039699,11.8565229295003)
25779.6502299353 = beat(29.4571389459274,29.4235181382615)
25770.825310343 = harmean(25779.6502299353,25762.0064305964)
Pay attention to 25721 vs. 25771.
Terminology Know Doubt
Williams “factsheet” tropical & synodic
21867.405834306 = beat(11.8629550321199,11.8565229295003)
23741.9817459875 = beat(29.4600280504908,29.4235181382615)
22766.170636964 = harmean(23741.9817459875,21867.405834306) ~= 23k
37012.3865742555 = beat(83.9373297002712,83.7474058863792)
34730.9484755915 = beat(164.498657117277,163.723203285421)
35835.3926584539 = harmean(37012.3865742555,34730.9484755915) ~= 36k
62424.1184948485 = beat(35835.3926584539,22766.170636964)
a variation on 64k but manifest from different combinations
Seidelmann tropical & synodic presents interesting puzzle
coarse balance is clear near ~2722 (LNC,LLR adjusted k)
but clustered imbalance provokes deeper aggregation scrutiny
J,U
25691.0410103856 = beat(11.8619993833167,11.85652502)
25695.0568997754 = harmean(25699.0740448472,25691.0410103856)
25699.0740448472 = beat(84.021212742844,83.74740682)
—–
J,S,U,N
25722.8918067878 = harmean(25754.8216760853,25691.0410103856)
25723.9988806482 = harmean(25757.04141984,25691.0410103856)
25725.4581878491 = harmean(25755.9315001361,25695.0568997754)
25726.9176606306 = harmean(25754.8216760853,25699.0740448472)
25728.0250810588 = harmean(25757.04141984,25699.0740448472)
—–
S,N
25754.8216760853 = beat(29.4571726091513,29.42351935)
25755.9315001361 = harmean(25757.04141984,25754.8216760853)
25757.04141984 = beat(164.770559417647,163.7232045)
inclination node out:
18978.2646244704 = beat(11.863936923446,11.85652502)
25728.2492709741 = beat(72337.575351641,18978.2646244704)
25725.2841498062 = beat(72361.0252351259,18978.2646244704)
“In fact, the very definitions of these planes are problematic for high-precision work.”
no doubt
2319.71393669362 = 1/(1/11.861990807677-3/29.4571309198874+1/84.01495797691+1/164.786005834669)
table 2a
2534.00777150548 = 1/(1/11.86260678-3/29.4480064+1/84.0175262+1/164.7903053)
table 1 at same link
I’m sure some can see what’s going on with the shorter model-duration biases (e.g. Seidelmann 1992 Keplerian model was fit to just 66 years-worth of observations)
multidisciplinary teams could be kept busy for years exploring systematic sampling & aggregation biases
they don’t leverage CLT (central limit theorem) — very curious
some of the summaries suggest an “intermediate” (deformed) coordinate system (based on number theory) is used in some of the “more special” models (raises some of the most interesting curiosities about knew miracle methods “weather trade” secret or ignorance)
one of the things I started doing was putting together all possible combinations of crosses of different model parameter-sets to sort and categorize reference-frame & definition ambiguities, offsets, & biases — rapidly clarifies the main structures …even if the detective knows nothing about what’s being modelled — quick avenue to comparative sense
I’m sure I could develop really simple methods to precisely sharpen “mean” elements and organize a vastly more intuitive model structure that would facilitate use and interpretive ease for a multidisciplinary audience …but I almost certainly won’t do it without stable, secure, long-term funding and a diverse, talented, subordinate team (meaning no internal politics).
problem: I’ve identified far too many avenues needing exploration right when my time & focus for this has been cut by an order of magnitude; probably select a small, special subset for now (picking stuff no one else would, no doubt…)
“expert” knew miracle myth OD
pop quiz (taken silently withOUTtakin’ D-bait) :
what organization’s sampling (& 1911-1977 training) interval found QUITE OBVIOUS bias (without simply saying so UPFRONT in 2008)????
Williams “factsheet” sidereal
2317.51251648274 = 1/(1/11.8619822039699-3/29.4571389459274+1/84.0120465434634+1/164.788501026694)
Seidelmann synodic
2320.97373292688 = 1/(1/11.8619993833167-3/29.4571726091513+1/84.021212742844+1/164.770559417647)
Seidelmann tropical (mislabelled as sidereal in pub.)
2320.01916295313 = 1/(1/11.85652502-3/29.42351935+1/83.74740682+1/163.7232045)
Williams “factsheet” tropical
2319.96076275948 = 1/(1/11.8565229295003-3/29.4235181382615+1/83.7474058863792+1/163.723203285421)
Standish sidereal Keplerian 3000BC-3000AD (unadjusted)
2319.71393669197 = 1/(1/11.861990807677-3/29.4571309198874+1/84.01495797691+1/164.786005834669)
orbital invariance in (well overdue) hindsight:
initial “expert” guidance? no. k
(too) costly delays without especially deep, early focus on reference frames
USinilliberal climbIT
Diss Cursin’ list of crucial “expert failed guide dense” :
This one at least makes the top 10 – probably the top 5.
html-typo (hidden) in last comment:
bold-off html-tag after “IT” should be link-off i.e. /a not /b
–
further diagnostics forthcoming (at a very slow pace)
high frequency stuff here relates to “long.peri. […] deg/Cy” Table 2a = Table 8.10.3
4270.51884168654 = 2/(1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
936.955612197409 = 1/(-2/11.8627021700857+5/29.4701958106261)
Conclusion
The parameter bias in the short-duration models is systematic and diagnosable with (a) traverse-closing methods from a basic surveying course and (b) central limit theorem (intro stats course).
I’ve also identified the source of asymmetry here. I’m honestly starting to wonder if all this stuff was planted purposefully.
interpret carefully:
835.26379569011 = beat(936.955612197409,441.596056083158)
835.028692086849 = beat(936.955612197409,441.530332692567)
883.350168557103 = harmean(936.955612197409,835.546575435631)
936.600040514322 = beat(835.546575435631,441.596056083158)
936.304439796406 = beat(835.546575435631,441.530332692567)
441.5 = 883 / 2
25731.3307999186 = beat(11.861990807677,11.85652502)
25721.4885660692 = beat(11.861990807677,11.8565229295003)
25786.7295255651 = beat(29.4571309198874,29.42351935)
25785.7988537611 = beat(29.4571309198874,29.4235181382615)
25759.0003768883 = harmean(25786.7295255651,25731.3307999186)
25753.6035620709 = harmean(25785.7988537611,25721.4885660692)
4267.83999767789 = slip(164.786005834669,84.01495797691)
19.8589050137632 = beat(29.4571309198874,11.861990807677)
60.9473428358019 = slip(29.4571309198874,11.861990807677)
883.060665385134 = slip(60.9473428358019,19.8589050137632)
25557.2802223533 = slip(4267.83999767789,883.060665385134) ————————————-
36003.3715298079 = harmean(60891.850424131,25557.2802223533)
25688.6057708122 = beat(60891.850424131,18066.7417214663)
36129.9162647266 = harmean(60891.850424131,25685)
60912.1198244773 = beat(25685,18066.7417214663)
1806.17637816608 = slip(883.060665385133,60.9473428358019)
36133.4834429326 = beat(29.4474984673838,29.42351935)
36131.65611118 = beat(29.4474984673838,29.4235181382615)
–
compare with
4278.72826993103 = slip(164.788501026694,84.0120465434634)
1798.25390532451 = slip(883.192112166317,60.9470469878813)
–
23126.4013526327 = beat(11.8626067830889,11.85652502)
23118.4507121144 = beat(11.8626067830889,11.8565229295003)
35384.5860615844 = beat(29.4480063959839,29.42351935)
35382.8336890746 = beat(29.4480063959839,29.4235181382615)
66756.8778237927 = beat(35384.5860615844,23126.4013526327)
66696.8976941191 = beat(35382.8336890746,23118.4507121144)
26048.6678680319 = beat(84.0175261973943,83.74740682)
26048.5775452477 = beat(84.0175261973943,83.7474058863792)
25283.456332553 = beat(164.790305314929,163.7232045)
25283.4273672742 = beat(164.790305314929,163.723203285421)
860677.506841794 = beat(26048.6678680319,25283.456332553)
860742.554004726 = beat(26048.5775452477,25283.4273672742)
72370.1350864148 = beat(860677.506841794,66756.8778237927)
72299.19036667 = beat(860742.554004726,66696.8976941191)
72334.6453311711 = harmean(72370.1350864148,72299.19036667)
compare
72337.575351641
72337.575351641
72361.0252351259
26k ~= slip(4270,883)
pentagonal pyramidal numbers:
936, 1470, 1800, 4200
178.942598954722 = ΦΦ * 936.955612197409 / 2
468.300020257161 = 936.600040514322 / 2
468.152219898203 = 936.304439796406 / 2
600.203243993438 = harmean(835.546575435631,468.300020257161)
600.081837182902 = harmean(835.546575435631,468.152219898203)
600.276235692238 = harmean(936.955612197409,441.596056083158)
600.215511380798 = harmean(936.955612197409,441.530332692567)
pentagonal pyramidal number:
7200
lunisolar review link
0.0748026830551271 = axial(1.00002638193018,0.0808503463381246)
18.5964370693548 = beat(0.0748026830551271,0.0745030006844627)
8.85109350901809 = beat(0.0754402464065708,0.0748026830551271)
184.063510192393 = slip(18.5964370693548,8.85109350901809)
600.241396282931 = slip(184.063510192393,5.99685290323073)
compare
22.1391843145908 = 1/(3/0.615197265341166-5/1.0000174322536+2/11.8626067830889)
22.123085762185 = 1/(3/0.615197293550571-5/1.00002641247066+2/11.8634375929488)
30424.2928774432 = beat(22.1391843145908,22.123085762185)
304242.928774432 = 2 * 5 * 30424.2928774432
173801.88427185 = axial(405378.494928687,304242.928774432)
173801.269042893 = axial(405375.147994516,304242.928774432)
compare
173913.043478261
173889.708842077
173804.240903943
close enough to suspect 5:1 DH resonance
note well that perihelion rates in Standish’s long model match systematically-biased mean longitude rates in Seidelmann’s short model (another way to understand 64k)
the “expert guidance” we had in “climate discourse” more than a decade ago was grossly and reprehensibly insufficient
936 = beat(883,600)/2
Decisions made by officials hundreds of years obstruct efficient climate exploration in the present.
A few talkshop readers may recall that years ago I wrote to NASA about a discrete discontinuity in Horizons output. It was coincident with a major historical calendar switch. The problem was readily acknowledged by an official.
I’m now finding a serious discontinuity obstructing refined measurement of mean elements from fresh Horizons output (to be neither confused nor conflated with Horizons output from many years ago). Upon first glance it looks related to the same calendar issue. Tedious diagnostics will be necessary.
It is very disappointing to discover that it’s necessary to do such time-consuming, careful checks on such a well-resourced organization.
I’m refining a clearer sense of the issues obstructing Halstatt communication. I’m increasingly aware of how the specialists could better serve the broader climate discussion community to help remove sources of persistent ambiguity, thus facilitating efficient, independent learning and understanding.
typo above — should read:
“Decisions made by officials hundreds of years ago obstruct efficient climate exploration in the present.” (church then and government now carrying forward mess created then)
ridiculously anomalous longitude rates (& a step change) at this date:
1582.805556 (“the moon is glued to a picture of heaven and…” -SG)
The step changes critically interfere with Halstatt estimation (how I ended up on this totally-unwanted tangent).
old comment from way back:
“I was ready to expand my investigation to include Mercury, but I hit a glitch in the NASA Horizons online software. I sent [multiple] requests to the system that tripped it up, causing staff to discover a bug in the program around the time where they have to switch from one calendar system to another”
=
Nov 07, 2009:
— Version 3.35a
Fixed a bug that caused no output when using calendrical output
stepping to step by month into a non-existent range of date labels
(i.e., the Gregorian calendar switch-over point in October 1582).
=
This is where it would be helpful to have a budget and a diverse, multidisciplinary team of technicians. Fussing with a neverending stream of tedious technical hurdles is an unacceptable waste of an explorer’s time and resources.
An option to have Horizons output everything in a Julian frame (with no weird gaps & steps) would (quite obviously & simply) be helpful.
All of the mean longitude rates after 1582 are contaminated. That’s 42% of the record. This is totally ridiculous. Correcting for the contamination appears simple in central limit but not otherwise (more tedious diagnostics needed for event-level precision). I may stop when I’m satisfied with central limit estimates (and let these well-resourced organizations spend their own time & resources on the event-level clean-up post-1582).
figured out: superior method for estimating mean elements
s(4370) = 4270
report on Halstatt?
936.17955717643 = 3 * φ * s(4370) / 22.14
…soon
Past 378
Perihelion rates systematically bias sidereal longitude rate estimates based on short sampling intervals.
There’s a simple way to adjust for this, but be well-aware that it isn’t noted on the webpages climate explorers might use as sources upon which to found their explorations.
Bias structure from Table 2a:
11.8627021700857 = 360*100/(3034.90371757-0.18199196)
29.4701958106261 = 360*100/(1222.11494724-0.54179478)
84.0331316671926 = 360*100/(428.49512595-0.09266985)
164.793624044745 = 360*100/(218.46515314-0.01009938)
936.955612197409 = 1/(-2/11.8627021700857+5/29.4701958106261)
4270.51884168654 = 2/(1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
string of related notes (mnemonically interspersed within clue$ave links)
(March 8, 2022 at 9:28 pm to March 9, 2022 at 10:23 pm)
be aware of a few typos above
(obvious to anyone reviewing carefully enough, even where not pointed out explicitly)
Top 4˚C
brief:
1st marvelled rightly
at˚Knew miracle methods
ace:
parsimonious statistical model
with systematic physical bias
wonderous miss 51 lb:
why wood ~1934 decoys
be left buy commerce?
“now i no. why” – lb
Finding Peace
Paddling inlet.
Between mountains.
Left steep cliff. Headed right towards island pair.
Lightning track approached (not forecast). Wide spinning cloud descended.
Trees swayed violently. Some snapped. Hat, hood suddenly thrown with 2 circling eagles edging only as necessary — and always gracefully — on intense wind bursts.
Anticlimatically, sea-chop damped within 15 min.
(1929.22222222222)
94874.0989279822 = slip(15403.6217843836,4870.92829844298)
(1930.13888888889)
19.8588778386491 = beat(29.4571541785584,11.8619848835796)
60.9469873120748 = slip(29.4571541785584,11.8619848835796)
883.230870074906 = slip(60.9469873120748,19.8588778386491)
2320.22316001908 = 1/(1/11.8619848835796-3/29.4571541785584+1/84.0206328418372+1/164.770073333031)
15403.4824158992 = slip(936.955612197409,883.230870074906)
4870.91188428463 = slip(2320.22316001908,936.955612197409)
94883.7340415051 = slip(15403.4824158992,4870.91188428463)
94885.6349884336 = beat(304407.424910486,72337.575351641) ~= 95ka
94885.8433982369 = beat(304405.279928371,72337.575351641) ~= 95ka
(1933.47222222222)
94918.7878447315 = slip(15402.9756291991,4870.85219470599)
94926.7650262257 = beat(304399.417131486,72361.0252351259) ~= 95ka
((1934.47222222222))
19.8588781067985 = beat(29.4571537687132,11.8619849127921)
60.9469915921757 = slip(29.4571537687132,11.8619849127921)
883.228703878724 = slip(60.9469915921757,19.8588781067985)
2320.23196371032 = 1/(1/11.8619849127921-3/29.4571537687132+1/84.0206333236655+1/164.77007177171)
15402.8235915673 = slip(936.955612197409,883.228703878724)
4870.83428686792 = slip(2320.23196371032,936.955612197409)
94929.3094879479 = slip(15402.8235915673,4870.83428686792)
Thank God 4 gracious guidance.
sidereal orbital invariance with anomalistic bias
(1930.13888888889)
4932.39309395826 = slip(2362.15308834917,936.955612197409)
9658.89570899433 = slip(4270.51884168654,936.955612197409)
231392.295261542 = slip(9658.89570899433,4932.39309395826)
compare with g_1 & s_1 (mercury)
(1934.47222222222)
4932.23055879401 = slip(2362.14066213527,936.955612197409)
231750.569835749 = slip(9658.89570899433,4932.23055879401)
supplementary:
7255.79048704034 = slip(2362.15308834917,883.230870074906)
7255.58494846013 = slip(2362.14066213527,883.228703878724)
Linguistic Functional Numeracy (aka dumb muck .4 blue COIIair ‘less Sun’)
11 = 55 / 5 ———- nasa horizons measure mint
55 = 28^2 – 27^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2
55 = 2*harmean(2320,2362) – 4627
5 = 2*harmean(2320,2362) / 936
crude state mean˚T:
42 = 2362 – 2320 ~= harmean(u,n/2)
21 = average(-2320,2362)
1930˚Figure$D-pressUN$script
editor[We11]inkin’to 836 (lowest un˚touchable weird no.)
with˚C air fully-refined folk us ‘ape beat’ note$131k:
2320.2, 2362; 41.8, 20.9
check date $0 EU Don˚T .4 get_mnemonically_5,4,3,2,1 LB gravity (where 51 is Shorthand for S’un’)
2320.4, 2362; 41.6, 20.8
hedgeUNno.ME?go bull?USmmm? if $0: know doubt
muck clock clue in side real possess un? 95ka dates refined:
((1930.30555555556))
94885.4859731875 = 1/(4/11.8619848847033-9/29.4571541627973-2/84.0206328603223-2/164.770073273138-8/11.8627021700857+20/29.4701958106261)
94885.6349884336 = beat(304407.424910486,72337.575351641)
94885.8433982369 = beat(304405.279928371,72337.575351641)
((1934.22222222222))
94926.6787401574 = 1/(4/11.8619849111069-9/29.4571537923607-2/84.0206332957994-2/164.770071862025-8/11.8627021700857+20/29.4701958106261)
94926.7650262257 = beat(304399.417131486,72361.0252351259)
11.8627021700857 & 29.4701958106261 are anomalistic periods from Standish (1992) Table 2a
(anomalistic tell-tale clue: 936 js & 4270 jsun are stable & clear across entire nasa horizons model range)
$era-wise the grave IT model tuned 2*ear11y˚30s date$sew the mystery turned up hears
plea$11et?us˚Find˚Fin’n’cia11peace0vvheat with no doubt
((˚Fin’ridiculous “leadership” from ALL the big countries))
refined dates most closely matching mercury (at monthly resolution) :
(1925.55555555556)
231016.042780749 = s_1 (La2011 Table 6 La2010a)
231014.076532225 = 1/(6/11.8619848526737-15/29.4571546119796-9/84.0206323349967+18/164.770074974996+7/11.8627021700857-20/29.4701958106261+5/84.0331316671926+5/164.793624044745)
(1935.55555555556)
231842.576028623 = g_1 (La2011 Table 6 La2004a & La2011 Table 6 La2010a)
231842.576028623 = s_1 (La2011 Table 6 La2004a)
231840.243340341 = 1/(6/11.8619849200943-15/29.4571536662419-9/84.0206334445196+18/164.770071380022+7/11.8627021700857-20/29.4701958106261+5/84.0331316671926+5/164.793624044745)
(1940.88888888889)
232283.957100594 = g_1 (La2011 Table 5)
232282.319418881 = 1/(6/11.861984956037-15/29.4571531617084-9/84.0206340418668+18/164.770069443753+7/11.8627021700857-20/29.4701958106261+5/84.0331316671926+5/164.793624044745)
The measurements are simply a (gaussian) function of the nasa horizons model parameterization.
The mystery that arose:
Why are 95ka, 131ka, & ~231ka all tuned to ~early 1930s (tightly-clustered despite 20ka span)?
not necessarily trying to answer the question
but reporting 1 more might˚T˚Cur(i0)us IT
95 & 131 with 405 & 2360 (metronome)
124 = axial(2360,131)
124 = beat(405,95)
99 = beat(2360,95)
99 = axial(405,131)
77 = axial(405,95)
55 = axial(131,95)
in kiloyears
95 = axial(405,124)
95 = axial(2360,99)
131 = beat(405,99)
131 = beat(2360,124)
compare:
107 = harmean(2360,55) = harmean(2360,axial(131,95))
110 = harmean(131,95)
98 = axial(1180,107)
110 = axial(1180,121)
121 = beat(1180,110)
121 = axial(405,173)
173 = beat(405,121)
Mercury: plea$$T˚ache˚C˚Eur.alarm˚F***the˚T˚i.e.[won??N/A!!!]g_0R.
73 = axial(232,107)
73 = axial(231,107)
69 = axial(232,98)
69 = axial(231,98)
Tropical Review
(now with double-hindsight)
The incorrect tropical “correction” resulted in a systematically biased decoy.
NASA Horizons is close to the following:
1.00001743390371 = (1-(1/240)^1)^(0/1)/(1-(1/240)^2)^(2/2)/(1-(1/240)^3)^(3/3)/(1-(1/240)^4)^(2/4)/(1-(1/240)^5)^(5/5)/(1-(1/240)^6)^(1/6)
25763.8618611039 = beat(1.00001743390371,0.99997862)
0.240846701471137 = beat(25763.8618611039,0.24084445)
0.615197259514841 = beat(25763.8618611039,0.61518257)
1.00001743390371 = beat(25763.8618611039,0.99997862)
1.88084834821604 = beat(25763.8618611039,1.88071105)
11.8619839030546 = beat(25763.8618611039,11.85652502)
29.457160787184 = beat(25763.8618611039,29.42351935)
84.0205219636868 = beat(25763.8618611039,83.74740682)
164.770280379209 = beat(25763.8618611039,163.7232045)
250.431628515718 = beat(25763.8618611039,248.0208)
130762.093818245 =1/(3/11.8619839030546-8/29.457160787184-2/84.0205219636868+7/164.770280379209)
mnemonic supplement to go with last comment
(˚Knew miracle methods of ((no doubt)) integration have limits) :
2360489.30437277 = 2/(1/(φ^22+1/11)^(e/11+1/22)-1/ln(163*67*43*19*11*7*3*2*1))
1180244.65218639 = 1/(1/(φ^22+1/11)^(e/11+1/22)-1/ln(163*67*43*19*11*7*3*2*1))
405375.147994516 = 1/((1/(φ^22+1/11)^(e/11+1/22)-1/ln(163*67*43*19*11*7*3*2*1))/2+1/271/43/7/3/2)
lim x→∞
(φ^x+2/x)^(2e/x+1/x)
= φ(φφ)^e
supplementary to last comment:
those are conversions of Seidelmann (1992) tropical to sidereal — the better option they had – but did not use – for the “correction”
lol at the layers of corrections, disjoint calendars, systematic biases, & forensic diagnostics these folks have left a lone, displaced ecologist with no funding to sort out for them (a large, well-resourced organization) —- ˚F˚in’ ridiculous western inequality
be aware that Williams’ “factsheet” sidereal for U & N are nowhere near NASA Horizons (J & S are fine)
in this ongoing review, so far Standish (1992) gives the anomalistic jsun periods best-matching Horizons
what a piece of (should be unnecessary) diagnostic work this crew has left us
I now have an extensively long list of further things to check. Need 10 years of secure, stable funding and talented team to do it comprehensively. I’ve dug out some old prototypes (combinations of gaussian & generalized wavelets) and furthered them. Under better circumstances it could go a very long way. The algorithms take to way too long to run. Team: My life history leaves me effective but not efficient at the task. Get me funding and I’ll shepherd and delegate the development. I know no one else will do it right.
Commerce Dove:
Mint Heart DEEP
1st note hear$ whirl D???why???D lower & middle ˚Class˚C?buy done˚$ 1930$ purge yuan plan IT (no doubt hear$us?hint:too UNaffordable lie ability)
(1929.22222222222)
130697.862041146 = beat(173913.043478261,74619.9907876555) (La2011 Table 6 La2004a)
130697.499887022 = 1/(3/11.861984877399-8/29.4571542652499-2/84.0206327402408+7/164.770073662204)
(1930.13888888889)
130711.04387292 = beat(22379.3746087485,19107.8673985264) (La2011 Table 6 La2010a)
130711.463657429 = 1/(3/11.8619848835796-8/29.4571541785584-2/84.0206328418372+7/164.770073333031)
(1934.47222222222)
130777.916695678 = beat(173804.240903943,74626.0277273697) (La2011 Table 5)
130777.4870868 = 1/(3/11.8619849127921-8/29.4571537687132-2/84.0206333236655+7/164.77007177171)
(1933.47222222222)
130762.248768164 = 1/(3/11.8619849060515-8/29.4571538632991-2/84.020633212248+7/164.77007213279)
Seidelmann (1992) tropical
130762.093818127 = 1/(3/11.85652502-8/29.42351935-2/83.74740682+7/163.7232045)
(sarc) Great! (/sarc)
D-press 0˚D-on˚T no? side R-eel
Seidelmann (1992) tropical converted to sidereal
130762.093818245 =1/(3/11.8619839030546-8/29.457160787184-2/84.0205219636868+7/164.770280379209)
Weather east AND west,
let us pray for peace (financial, political, and otherwise).
last comment
130711.04387292 = beat(22379.3746087485,19107.8673985264)
true – but this perspective was in mind
130711.04387292 = beat(173889.708842077,74619.9907876555) (La2011 Table 6 La2010a)
Read Together:
“the date witch figures a line meant”
quickly peace together (sensibly & pragmatically)
25899.2748828505 = slip(4270.51884168654,883.230870074906)
72333.0975802726 = slip(25899.2748828505,936.955612197409)
400501.909620738 = slip(25899.2748828505,4270.51884168654)
crude suggestion
25899.1238467892 = 6 * beat(405000,4271)
4270.51802039155 = 5 * axial(25899.1238467892,883.230870074906)
no. doubt sew EU can refine “on Eur. own”?
4 equations
4 unknowns
there was another album before that too (best ˚Figure$ away too avoid IT entirely)
anomalistic orbital invariant
2790.83682251396 = 1/(-2/11.8627021700857+5/29.4701958106261+3/84.0331316671926-6/164.793624044745)
130548.596389613 = slip(2790.83682251396,936.955612197409)
supplementary
where ~72k is g_4 from sources noted in brackets below
924.974835143217 = axial(72337.575351641,936.955612197409) (La2011 Table 6 La2004a)
924.974835143217 = axial(72337.575351641,936.955612197409) (La2011 Table 6 La2010a)
924.978668097723 = axial(72361.0252351259,936.955612197409) (La2011 Table 5)
25899.2953840101 = 28 * 924.974835143217
25899.2953840101 = 28 * 924.974835143217
25899.4027067362 = 28 * 924.978668097723
orbital invariant clue in standish (1992) biased sidereal U & N:
2328.32483734181 = 1/(-2/11.861990807677+5/29.4571309198874+3/84.01495797691-6/164.786005834669)
2135.25942084327 = 1/(1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
25750.7410386977 = beat(2328.32483733907,2135.25942084327)
Horizons DATA (to be neither confused nor conflated with MODELS) :
https://ssd.jpl.nasa.gov/planets/obs_data.html
“About
[…]
This viewer was implemented using 2-body methods, and hence should not be used for determining accurate long-term trajectories (over several years or decades) or planetary encounter circumstances. For accurate long-term ephemerides, please instead use our Horizons system.
Version 1.0.0 (2018 March)”
“Limitations
The position of the small body is computed using so-called two-body equations: only the gravitational force of the Sun is considered in the viewer. If the small body makes a close approach to the Earth or a planet, its position as shown in this viewer may become inaccurate. You are especially cautioned against using this viewer to make predictions of the small body’s position a long time in the future or past.
Accurate positions of small bodies can be obtained from our Horizons ephemeris system which uses a numerically integrated high fidelity model which includes gravitational perturbations by the Sun, all the planets, and some of the largest asteroids.”
Take 58
weathered myth, math, observation, & model:
246671132.298687 = beat(4627.18618248315,4627.09938493153)
405375.730975656 = 246671132.298687 / 608.5
1180244.65214683 = 246671132.298687 / 209
2360489.30429365 = 246671132.298687 / 104.5
220 = s(284); 284 = s(220) ————- lowest amicable pair
504 = 284 + 220 = 608.5 – 104.5
s(496) = 496 = s(4*163) = s(s(608)) —- perfect no doubt
supplementary
4627.09501221791 = 365.25 / 365.2425 * 4627
236 = 047 + 59 + 59 + 071
1/(1/6.57-1/8.45) = 29.53
Misnomer Alert
unhelpful conventions are used in astronomy field (or at least Horizons) where simpler, more intuitive forms of model organization will -no doubt- be quickly obvious to (some) outsiders looking in
=
[Horizons] Output type : [geometric] osculating elements
JDTDB Julian Day Number, Barycentric Dynamical Time
[Calendar Date (TDB) before 1582-Oct-15 Julian calendar system; later calendar dates Gregorian]
EC Eccentricity, e
QR Periapsis distance, q (au)
IN Inclination w.r.t X-Y plane, i (degrees)
OM Longitude of Ascending Node, [omega], (degrees)
W Argument of Perifocus, w (degrees)
Tp Time of periapsis (Julian Day Number)
N Mean motion, n (degrees/day)
MA Mean anomaly, M (degrees)
TA True anomaly, nu (degrees)
A Semi-major axis, a (au)
AD Apoapsis distance (au)
PR Sidereal orbit period (day)
=
♈︎ : reference direction
Ω = ascending node longitude
ϖ = periapsis longitude
ϖ ≡ Ω + ω
ω = periapsis argument
ν = true anomaly
L = true longitude
L = ϖ + ν
L = Ω + ω + ν
M = mean anomaly
l = mean longitude
l = ϖ + M
l = Ω + ω + M
_
mean not meant when “mean” said (“freedom of choice is words that they will bend“ — metallica)
potential for (innocent perhaps) cross-disciplinary miscommunication:
“mean” as defined by this astronomy field convention (counterintuitive historical legacy no doubt)
is not in accord with intuition, convention, and perspective brought from other fields.
effect: builds delays into what might otherwise be efficient, harmonious cross-disciplinary exchange
Myth 0 “logical math”? Horizons
with crude means (refinable)
302998.544820593 = beat(11.8624525330717,11.8619881339068)
302998.544575869 = beat(11.8623051105517,11.8618407229289)
56498.324215687 = beat(29.4726630438482,29.4572964823535)
56498.3242128238 = beat(29.4711887578906,29.4558237332929)
395868.561366945 = beat(84.036052500683,84.0182168855969)
395868.561421726 = beat(84.0343524991551,84.0165176055963)
644223.254745067 = beat(164.797156009437,164.755010438071)
644223.254719654 = beat(164.791273817488,164.74913125433)
95238.1591975846 = harmean(302998.544820593,56498.324215687)
412149.950131739 = harmean(644223.254745067,302998.544820593)
98883.9415073487 = harmean(395868.561366945,56498.324215687)
171631.483256873 = axial(395868.561366945,302998.544820593)
130097.139297195 = beat(412149.950131739,98883.9415073487)
123859.079046001 = beat(412149.950131739,95238.1591975846)
109971.337347519 = harmean(130097.139297195,95238.1591975846)
109971.337347519 = harmean(123859.079046001,98883.9415073487)
121171.903078096 = axial(412149.950131739,171631.483256873)
1189710.99772792 = beat(121171.903078096,109971.337347519)
2379421.99545584 = 2 * 1189710.99772792
98580.8900682825 = axial(1189710.99772792,107487.428178114)
107487.428178114 = harmean(2379421.99545584,54985.6686737593)
that’s without even using gaussian
a key to sorting out disorienting “clerical (?) errors” contaminating various “official” summaries:
reference frame diagnostics expose puzzle pieces not sharing a common geometry
common frames used by different models (not always made explicit but detectable with diagnostics)
• sidereal
• solar system invariant (i.e. relative to J node)
• ecliptic at epoch (often incorrectly noted as “ecliptic” but diagnosable as “at epoch”)
The calculations above are with Jupiter node drift subtracted from horizons osculating output:
• beat(M,l)
• beat(ν,L) — (notation)
It’s obvious at this point that a stable, compact model spanning millions of years is feasible.
recall:
anomalistic 4270 (jsun) & 936 (js) stable over entire 20ka Horizons span
Standish’s f in Table 2b
(used in M = mean anomaly estimation formula)
U & N
4693.45849222646 = 360 * 100 / 7.67025
/ 5 =
938.691698445292 = 360 * 100 / 38.35125
J & S
note:
47478.8397233984 = harmean(49188.090971097,45884.3897482377) —- Saturn s & g
4692.59798767156 = beat(47478.8397233984,4270.51884168654)
/ 5 =
938.519597534312
answers & raises questions
Past Decoys
“Such elements are not intended to represent any sort of mean; they are simply the result of being adjusted for a best fit.” — Standish (1992)
That may be — and no doubt true means can be found with more care.
130762.093818127 = beat(2361.92512664079,2320.01916295311) ~= 131k —- orbital invariants
2340.78460414247 = harmean(2361.92512664079,2320.01916295311) ———- arose from pairs
1170.39230207124 = axial(2361.92512664079,2320.01916295311)
1199.97261013651 = beat(47478.8397233984,1170.39230207124)
936.754162989874 = axial(4270.51884168654,1199.97261013651) ~= axial(4271,1200)
Horizons (in hindsight)
shows up in Ω:
883.178329571106 = harmean(936,836)
= harmean(836+average(-178,378),836)
shows up in ω & ϖ = Ω + ω :
922.210960518562 = harmean(936,908.822299651568)
= harmean(836+average(-178,378),harmean(836+average(-178,378),harmean(836+average(-178,378),836)))
where
908.822299651568 = harmean(936,883.178329571106)
= harmean(836+average(-178,378),harmean(836+average(-178,378),836))
supplementary
600.073619631902 = harmean(936,441.589164785553)
= harmean(836+average(-178,378),axial(836+average(-178,378),836))
“Steep is the mountain which we climb” — Metallica
2400 2341 59
2362 2320 42
38 80
76 160
152 320 = 163+67+43+19+28
304 640
608 1280
2*(163+67+43+19)
2400 / 365.25
Standish’s T^2 term:
it’s not really time
after accounting for regular oscillations (in Horizons 20ka span) :
mean longitude rates drift linearly
mean anomaly rates drift as a quadratic of that (r^2 very nearly 1 for both)
compact closed form equations look feasible
clean factor of 3 appears in temporal scaling (geometric basis)
systematically unbiasing biased estimates appears feasible
Horizons Anomalistic Tunin’
197703.858840665 = harmean(405568.048748278,130711.04387292)
11.8627025553864 = beat(197703.858840665,11.861990807677)
29.4700074925316 = axial(936,11.8627025553864/2)
A rose myth (or math)?
mimi˚C˚Kin’SSTand!sh more precisely:
29.4701937613057 = 1/(-2/405568.048748278-2/11.861990807677+1/29.4571309198874+2/11.8627025553864)
405568.048749313 = 1/(-1/11.861990807677+0.5/29.4571309198874+1/11.8627025553864-0.5/29.4701937613057)
Standish (1992) :
404924.648581828 = 1/(-1/11.861990807677+0.5/29.4571309198874+1/11.8627021700857-0.5/29.4701958106261)
‘n’ ice !
98851.9294203326 = beat(304405.279928371,74619.9907876555)
197703.858840665 = 2 * 98851.9294203326
0 know doubt weather memorable myth or math
22.1396468061395 = ln(163*67*43*19*11*7*3*2*1)
with Standish (1992) anomalistic periods
22.1205725094214 = 1/(3/0.615197860179071-5/1.0000262476142+2/11.8627021700857)
25675.4767814772 = beat(22.1396468061395,22.1205725094214)
compare Mayan
and:
25679.8527338808 = UN harmean
25679.08722502 = beat(22.1396468061395,22.1205751889305)
22.1205751889305 = 1/(3/0.615197860179071-5/1.0000262476142+2/11.8627025553864)
Jupiter-Earth-Venus with Standish (1992) anomalistic
1.59867106414771 = beat(1.0000262476142,0.615197860179071)
0.761769224080824 = harmean(1.0000262476142,0.615197860179071)
0.380884612040412 = axial(1.0000262476142,0.615197860179071)
0.190442306020206 = 0.380884612040412 / 2
0.814043420635227 = beat(11.8627021700857,0.761769224080824)
0.715803548953639 = axial(11.8627021700857,0.761769224080824)
44.2411450188424 = slip(1.59867106414771,0.814043420635227)
6.84967828238651 = slip(1.59867106414771,0.715803548953639)
835.563824740778 = slip(6.84967828238651,0.761769224080824)
417.781912370389 = slip(6.84967828238651,0.380884612040412)
208.890956185194 = slip(6.84967828238651,0.190442306020206)
149 = 298 / 2
163
331
353 (orbital invariant 130672)
883
+101 (lowest odd prime Mertens 0-crossing)
883.185646071486 = harmean(936.563824740778,835.563824740778)
909.091872159363 = harmean(936.563824740778,883.185646071486)
922.62339315001 = harmean(936.563824740778,909.091872159363)
with Williams’ “factsheet” values:
60.9470469878813 = slip(29.4571389459274,11.8619822039699)
883.192112166325 = slip(60.9470469878813,19.8588772513307)
with Seidelmann decoy bias (short-duration model) no doubt clear in hindsight:
61.0464822565173 = slip(29.4474984673838,11.8626151546089)
835.546575435631 = slip(61.0464822565173,19.8650360864628)
71, 171, 271
review
1180244.65218282 = beat(22.1396468061395,22.1392315068494)
2360489.30436563 = beat(44.2792936122789,44.2784630136989)
with Standish (1992) anomalistic
171.471519050756 = beat(164.793624044745,84.0331316671926)
4231.48507417337 = slip(164.793624044745,84.0331316671926)
13120.0921835138 = slip(4231.48507417337,171.471519050756)
26240.1843670276 = 2 * 13120.0921835138
22.1392386512889 = beat(26240.1843670276,22.1205751889305)
22.1392359672564 = beat(26240.1843670276,22.1205725094214)
22.1392315068494 = (φ^22+1/11)^(e/11+1/22)
22.1205680565315 = axial(26240.1843670276,22.1392315068494)
26246.4517581191 = beat(22.1392315068494,22.1205725094214)
26250.2245780852 = beat(22.1392315068494,22.1205751889305)
wonderous weather decoy
26253.7412640768 = 262537412640768744 / 10^13
22.1205776858368 = axial(26253.7412640768,22.1392315068494)
in mnemonic hindsight
405375.147994305 = 1 /(1/2360489.30436563+1/271/43/7/3/2)
Great Dough
Press $0 Don˚T !
No. 1930 Why $
130711.04387292 = beat(173889.708842077,74619.9907876555)
94885.8433982369 = beat(304405.279928371,72337.575351641)
109953.889784291 = harmean(130711.04387292,94885.8433982369)
For˚Tallies hear?
109954.696553367 = 2/(7/11.8619848847033-17/29.4571541627973-4/84.0206328603223+5/164.770073273138-8/11.8627021700857+20/29.4701958106261)
hot pole-boydone$in sh! IT O˚C he
egg rush
in Zest˚T
tie sh! rum
more $isle 0we
sci. b a n j o u r 0 ˚ K
i . e . ˚C air folly read 2˚C a rose
get away from $8
in SST 0˚C mark at e^C˚0˚Know ME plea$
“thought” $0˚C old “global leader” $$T 00P aid
for$sober second
5 lb decoy$ in clue nos. 1
T˚ache 58˚F* linguist “˚C ˚K people”; 104 “love IT when EU can˚Tri”
109942.314217849 = beat(183569.40509915,68760.6112054329)
Point of Clarification
s(4370) – 2 * 19 = 4270 – 38 = 4232
Seidelmann sidereal short (bias = decoy) model
4270.09258127429 = slip(164.791315640078,84.016845922161)
Standish sidereal long model
4267.83999767789 = slip(164.786005834669,84.01495797691)
Standish anomalistic long model
4270.51884168654 = 2/(1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
4231.48507417337 = slip(164.793624044745,84.0331316671926)
Seidelmann tropical converted to sidereal (not biased)
4232.67340063361 = slip(164.770275240329,84.0205206274557)
Horizons ~1930 sidereal (not biased)
4232.12222054646 = slip(164.770073333031,84.0206328418372)
2 equations
2 unknowns
Notes (anomalistic)
anomalistic estimates via Seidelmann tropical-converted-to-sidereal
84.032929278878 = 3/(4/4270.51884168654-2/11.8627025553864+6/29.4701937613057+1/84.0205206274557)
164.794135784188 = 3/(2/4270.51884168654-1/11.8627025553864+3/29.4701937613057-1/84.0205206274557)
anomalistic estimates via Horizons ~1930 sidereal
84.0330017055757 = 3/(4/4270.51884168654-2/11.8627025553864+6/29.4701937613057+1/84.0206328418372)
164.793857247713 = 3/(2/4270.51884168654-1/11.8627025553864+3/29.4701937613057-1/84.0206328418372)
latter fit better (compare)
leaves a few questions on J & S refinement but crude outline’s complete
reviewing perspective (always aware jovians shape EMB orbit envelope),
how did this line of exploration arise? ———————————————————— question
with widening gaussian filter on Horizons rates (of several different metrics), 936 (js) & 4270 (jsun) are the last waves to drop out; their periods are stationary (a definitive clue)
–
100ka sidereal-anomalistic cycles turned up in this exploration:
16.9132450828034 = harmean(29.4571309198874,11.861990807677)
19.8589050137632 = beat(29.4571309198874,11.861990807677)
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
99476.8155050052 = beat(16.9161211952138,16.9132450828034)
99764.9717395856 = harmean(100054.802238465,99476.8155050052)
100054.802238465 = beat(19.8589050137632,19.8549641949401)
These are really basic and simply-physical cycles.
Curiosity: can’t recall anyone (“expert” or otherwise) pointing them out.
Raises question: Have some records been misinterpreted? (always a naive question)
_
also noting 40ka (diagnostically not a function of k)
60.9473428358019 = slip(29.4571309198874,11.861990807677)
60.8544553085225 = slip(29.4701958106261,11.8627021700857)
39929.1213729784 = beat(60.9473428358019,60.8544553085225)
quick note on Standish nodes:
19.8630730877524 = beat(29.4511026866654,11.862499899747)
61.0124738503575 = slip(29.4511026866654,11.862499899747)
851.495746676794 = slip(61.0124738503575,19.8630730877524)
review link for comparison
also compare figures at last review link with Standish (1992)
sidereal
1.59868960462765 = beat(1.0000174152119,0.615197263077614)
2.67043880509308 = slip(1.0000174152119,0.615197263077614)
8.10187019969398 = slip(2.67043880509308,1.59868960462765)
238.924841351755 = slip(8.10187019969398,2.67043880509308)
anomalistic
1.59867106414771 = beat(1.0000262476142,0.615197860179071)
2.67055352572244 = slip(1.0000262476142,0.615197860179071)
8.10445902963256 = slip(2.67055352572244,1.59867106414771)
233.230092320364 = slip(8.10445902963256,2.67055352572244)
with hindsight: important detail missing in past (lunisolar) discussion with Ian Wilson
nodes
1.59868736807262 = beat(1.00001071395229,0.615194395759546)
2.67039725923815 = slip(1.00001071395229,0.615194395759546)
8.10116286399172 = slip(2.67039725923815,1.59868736807262)
240.447503790019 = slip(8.10116286399172,2.67039725923815)
405 & 100
can agree on won thing in mediation mathematical
i.e. equivalent “too what?”$in site bull-locked already note$too simply above ad UN clarity
133k = beat(405k,100k) ≠ 131k
197810.936263778 = beat(11.8627021700857,11.861990807677)
132891.645799905 = axial(404924.648582574,197810.936263778)
132891.645799828 = beat(404924.648582574,100054.802238465)
66445.8228999138 = 132891.645799828 / 2
66445.8228999526 = beat(29.4701958106261,29.4571309198874)
–
UNode doubtsstand!sh
4232.95187099857 = slip(164.7814326883,84.0262133014925)
witch “experts” know doubt?
promise to tell the truth
the whole truth? ————————————————— where “experts” failed
& nothing but the truth — (at times counterproductive) populace response to “expert” failure observed
“gods” rich expectation know doubt:
repentance weather classified or not
maybe the populist response “too expert” aggression reminds us quite humbly:
“Thou shalt not take false gods before me.”
Still it isn’t entirely clear how God would like us to respond when “experts” fail to convey wholly truth and we instinctively deeply sense darkness weather by ignorance and/or deception. Keep shining light is no doubt part of the answer. Does God expect us “too humbly” submit “too expert” darkness and secrecy 0˚F*˚Tech˚Know log_cal elite D-$eat? I don’t think $0. Stable, secure financial equality would no doubt help eliminate gaps weather logical or other why$
SST and! shout’n’ode
$0 far left IT isn’t write 2D-bait in dumb mock crazy?
inequality how sing dove[11a Davo$$T˚C˚K?]hide’n’concur? a better way can be found no doubt
Pragmatic ally-why$sensibly negotiate$set11mean˚T?
IT’s C11ear there will never B ag[D]ream mint.
–
10 – or 20? – Times Richer
6.56993811757712 = axial(14.7255513433327,11.862499899747)
13.1398762351542 = harmean(14.7255513433327,11.862499899747)
16.912768715208 = harmean(29.4511026866654,11.862499899747)
19.8630730877524 = beat(29.4511026866654,11.862499899747)
61.0124738503575 = slip(29.4511026866654,11.862499899747)
851.495746676794 = slip(61.0124738503575,19.8630730877524)
17.2555048518984 = beat(851.495746676794,16.912768715208)
16.5833825558784 = axial(851.495746676794,16.912768715208)
65.7216461925254 = slip(19.8630730877524,8.6277524259492)
131.443292385051 = slip(19.8630730877524,17.2555048518984)
casually exploring further
too ponder more
questions arose
171.807870026969 = slip(65.7216461925254,9.93153654387618)
50.2176861731761 = slip(19.8630730877524,8.29169127793919)
95.0744667586459 = slip(19.8630730877524,4.1458456389696)
100.435372346352 = slip(19.8630730877524,16.5833825558784)
251.161498722936 = slip(95.0744667586459,16.912768715208)
172616.932121584 = slip(251.161498722936,50.217686173176)
good methods with nodecoy models
from review link:
109830.508474576 = beat(183829.787234043,68753.3156498674)
109942.314217849 = beat(183569.40509915,68760.6112054329)
109886.382906563 = harmean(109942.314217849,109830.508474576)
_
100046.317739694 = harmean(183569.40509915,68760.6112054329)
100077.22007722 = harmean(183829.787234043,68753.3156498674)
100061.766522545 = harmean(100077.22007722,100046.317739694)
_
219772.765813125 = 2 * 109886.382906563
183699.503897945 = beat(219772.765813125,100061.766522545)
68756.9632341238 = axial(219772.765813125,100061.766522545)
Distinction
130711.04387292 = 1/(-1/173889.708842077+1/74619.9907876555-0/72337.575351641-0/304405.279928371)
132807.5411729 = 1/(0.5/183569.40509915+0.5/68760.6112054329-1/173889.708842077-0/74619.9907876555-0/72337.575351641+1/304405.279928371)
raises diagnostic questions about Halstatt & Seidelmann (1992)
tropical:
130762.093818127 = 1/(3/11.85652502-8/29.42351935-2/83.74740682+7/163.7232045)
130762.093817963 = 1/(1/2320.01916295313-1/2361.92512664087)
(recall: same for tropical-converted-to-sidereal because orbitally invariant k-balance)
synodic:
132447.316536213 = 1/(3/11.8619993833167-8/29.4571726091513-2/84.021212742844+7/164.770559417647)
132447.316535802 = 1/(1/2320.97373292688-1/2362.37133892198)
synodic suggests trivial jsun anomalistic solution
supplementary
109942.314217849 = 1/(1/68760.6112054329-1/183569.40509915)
109953.889784291 = 2/(1/74619.9907876555+1/72337.575351641-1/173889.708842077-1/304405.279928371)
Seidelmann (1992) synodic with Standish (1992) nodes
281135.559177404 = beat(11.862499899747,11.8619993833167)
110491.22840888 = harmean(281135.559177404,68756.9632341238)
142925.41912705 = beat(29.4571726091513,29.4511026866654)
132497.268142232 = beat(142925.41912705,68756.9632341238) =======
132464.669333742 = harmean(133828.914107874,131127.95796173) =====
1411839.124377 = beat(84.0262133014925,84.021212742844)
131127.95796173 = harmean(1411839.124377,68756.9632341238) ++++++++++
2497052.60854115 = beat(164.7814326883,164.770559417647)
133828.914107874 = harmean(2497052.60854115,68756.9632341238) ————
426807.179318294 = beat(130704.452624679,100061.766522545)
200224.836371855 = beat(11.8627021700857,11.8619993833167)
6484482.69562381 = beat(426807.179318294,400449.672743711)
133831.621979313 = beat(12968965.3912476,132464.669333742) —————-
131125.358392832 = axial(12968965.3912476,132464.669333742) ++++++++++
Weather “60k mysteriously” or “60072 mathematically”, sh!op nos…
60077.769536193 = axial(132447.316536213,109951.487723802)
60058.3268992756 = axial(132447.316536213,109886.382906563)
60078.4866779602 = axial(132447.316536213,109953.889784291)
60075.0306299611 = axial(132447.316536213,109942.314217849)
60077.0524115463 = axial(132447.316536213,109949.085768262)
60041.6324548796 = axial(132447.316536213,109830.508474576)
60081.3396304648 = axial(132464.669333742,109951.487723802)
60061.8946831129 = axial(132464.669333742,109886.382906563)
60082.0568574667 = axial(132464.669333742,109953.889784291)
60078.6003987141 = axial(132464.669333742,109942.314217849)
60080.6224205865 = axial(132464.669333742,109949.085768262)
60045.1982554562 = axial(132464.669333742,109830.508474576)
comparative diagnostics ID ~common model features & reference frames
according to Standish (1992)
197810.936263778 = beat(11.8627021700857,11.861990807677)
695709.040566689 = beat(11.8627021700857,11.862499899747)
308037.559876028 = harmean(695709.040566689,197810.936263778)
308043 = g_5 according to Berger 1988 Table 4 (based on Berger 1978)
1/s_7 ~= 433k is key to conversion between Standish & Horizons’ early 1930s mean longitude rates
100061.766522545 = harmean(183699.503897945,68756.9632341238)
100402.649875387 = axial(433078.965717205,130704.452624679)
100745.863762348 = beat(100061.766522545,50201.3249376937)
100752.924584289 = beat(100054.802238478,50201.3249376937)
g_7 & s_7 harmean
100032.902990717 = axial(426282.531723861,130704.452624679)
113330.117656829 = harmean(130704.452624679,100032.902990717)
1.0000262486283 = beat(113330.117656829,1.00001742446316)
1.0000262476142 Standish for comparison
Basics — Part VI
La2011 Table 6 La2010a
419696.458422524 = 1 / g_7
433078.972953216 = 1 / s_7
1925651.43034595 = 1 / g_8
1873536.29976581 = 1 / s_8
La2011 Table 6 La2004a
419695.778851413 = 1 / g_7
433078.958481195 = 1 / s_7
1925645.70793482 = 1 / g_8
1873547.13358854 = 1 / s_8
harmean(2004,2010)
419696.118636694 = 1 / g_7
426282.531723861 = harmean(433078.965717205,419696.118636694)
433078.965717205 = 1 / s_7
1925648.56913613 = 1 / g_8
1899237.81359039 = harmean(1925648.56913613,1873541.71666151)
1873541.71666151 = 1 / s_8
Berger 1988 Table 4 (based on Berger 1978)
422814 = 1 / g_7
432023 = 1 / s_7
1940518 = 1 / g_8
1874374 = 1 / s_8
UN certain bias
Puzzle pieces organize neatly with a list of anomalistic & nodal periods and unambiguous determination of reference frame conventions — in particular the role of s_3, as with k before.
Crossing combinations of periods from different lists & sources turns out to be a crucial diagnostic where (sometimes biased) lists are contaminated by “clerical errors” & omissions (e.g. undefined or incompletely defined terms, mixed types of estimates in the same list, mislabelled estimates, drifting estimates (reflecting different or evolving sampling &/or numerical methods)).
With improved organization it’s becoming clear these pieces fit together quite neatly in several ways not noted by source authors (raises questions). Above are a few rough notes on U. Below on N.
review —– Seidelmann short-duration sidereal with tropical
23094.6280196825 = beat(11.8626151546089,11.85652502)
36133.4834429326 = beat(29.4474984673838,29.42351935)
64000.2003306117 = beat(36133.4834429326,23094.6280196825)
extension
66232.0778884627 = beat(1899237.81359039,64000.2003306117)
132464.155776925 = 2 * 66232.0778884627 —- compare:
132464.669333742 compare and carefully notice systematic bias
aka “60k” or “60072”
19.8549641949401 = beat(29.4701958106261,11.8627021700857) — Seidelmann (1992) synodic
19.8589101021728 = beat(29.4571726091513,11.8619993833167) — Standish (1992) anomalistic
99925.8030607636 = beat(19.8589101021728,19.8549641949401)
30036.625757983 = beat(99925.8030609588,23094.6280196825)
60073.251515966 = 2 * 30036.625757983
mnemonically
178k ~= beat(100k,64k)
100k ~= beat(178k,64k)
78k ~= harmean(100k,64k)
99929.8245614035 = beat(178k,64k)
30036.2624186769 = beat(99929.8245614035,23094.6280196825)
60072.5248373539 = 2 * 30036.2624186769
anecdote
with Berger 1988 Table 4 (based on Berger 1978)
95212.6482654869 = beat(308043,72732)
99590.2129742594 = beat(308043,75259)
123749.898156006 = beat(176420,72732)
131248.13693024 = beat(176420,75259)
110363.325696666 = harmean
55181.6628483332 = harmean / 2
400478.81907478 = beat(64000.2003306117,55181.6628483332)
110363.325696666 = harmean(400478.81907478,64000.2003306117)
25899.2909772319 = 6 * beat(400478.81907478,4270.51884168654)
883.230851357431 = beat ( 25899.2909772319, 4270.51884168654 / 5 )
883.230870074906 = slip(60.9469873120748,19.8588778386491) — with ~1930
60.9469873120748 = slip(29.4571541785584,11.8619848835796) — Horizons
19.8588778386491 = beat(29.4571541785584,11.8619848835796) — output
25899.2909772318 = slip(4270.51884168654,883.230851357431)
400478.819074885 = slip(25899.2909772318,4270.51884168654)
even though this is not 405k, ~this (noticed in wide gaussian smooths of horizons output) prompted the successful search for 405k (which is simpler, noted above)
weather too confuse(or,clarify?)
U,N bias with the center of the sample
66445.8228999526 = beat(29.4701958106261,29.4571309198874)
142925.41912705 = beat(29.4571726091513,29.4511026866654)
142889.793300912 = beat(1899237.81359039,132891.645799905)
132428.181070613 = beat(123859.129354423,64000.2003306117)
132421.415512283 = beat(123865.048265316,64000.2003306117)
132434.947320298 = beat(123853.211009174,64000.2003306117)
132553.277441197 = beat(123749.898156006,64000.2003306117)
123745.929709558 = axial(1873541.71666151,132497.268142232)
123856.611088565 = axial(1899237.81359039,132497.268142232)
1898438.644812 = beat(132497.268142232,123853.211009174)
1874451.80258414 = beat(132497.268142232,123749.898156006)
426193.700655367 = beat(130762.09381872,100061.766522545)
426282.531723861 = harmean(433078.965717205,419696.118636694)
426310.538349634 = beat(130777.4870868,100077.22007722)
427158.866183256 = beat(130697.862041146,100077.22007722)
427368.896577944 Berger
113224.424017561 = beat(1.0000262476142,1.0000174152119)
113356.074521123 = harmean(130697.862041146,100077.22007722)
113370.308271798 = harmean(130762.09381872,100061.766522545)
113386.012502077 = harmean(130777.4870868,100077.22007722)
113462.111826241 = beat(1.0000262476142,1.00001743371442)
special k˚s_3-point interpretation
JS: mirror
U : VE
N : VMa
1800 lunisolar with Standish (1992) anomalistic
0.0748026823036094 = axial(1.0000262476142,0.0808503463381246)
18.5964835171849 = beat(0.0748026823036094,0.0745030006844627)
8.85108298702051 = beat(0.0754402464065708,0.0748026823036094)
16.8899183125299 = beat(18.5964835171849,8.85108298702051)
184.049860297634 = beat(18.5964835171849,16.8899183125299)
5.99685290323073 = beat(0.0754402464065708,0.0745030006844627)
5.99685290323073 = axial(18.5964835171849,8.85108298702051)
1814.75583949423 = slip(5.99685290323073,1.0000262476142)
1787.32381267794 = slip(184.049860297634,16.8899183125299)
1800.93537030388 = harmean(1814.75583949423,1787.32381267794)
68961.1021012713 = slip(1800.93537030388,0.999978614647502)
68935.6558846914 = slip(0.99997862,0.999964114549628)
Diagnostics suggest numerical methods, limits, and tuning.
1.00001743390371 = (1-(1/240)^1)^(0/1)/(1-(1/240)^2)^(2/2)/(1-(1/240)^3)^(3/3)/(1-(1/240)^4)^(2/4)/(1-(1/240)^5)^(5/5)/(1-(1/240)^6)^(1/6)
0.0374013164945983 = axial(0.500008716951856,0.0404251731690623)
9.29976596105445 = beat(0.0374013164945983,0.0372515003422313)
4.42519629511916 = beat(0.0377201232032854,0.0374013164945983)
2.99842645161536 = beat(0.0377201232032854,0.0372515003422313)
2.99842645161536 = axial(9.29976596105445,4.42519629511916)
8.4424457329891 = beat(9.29976596105445,4.42519629511916)
91.5792802799901 = beat(9.29976596105445,8.4424457329891)
922.126441327183 = slip(2.99842645161536,0.500008716951856)
600.450003140476 = slip(91.5792802799901,8.4424457329891)
2607982.70831762 = slip(1800.93537030388,600.450003140476)
2607198.33309978 = 1/(3/11.8619822039699-8/29.4571389459274-2/84.0120465434634+7/164.788501026694)
2607198.3328459 = beat(2317.51251648274,2319.57436292966)
sidereal orbital invariant with Williams’ “factsheet”
0.0748024157783867 = axial(0.999978614647502,0.0808503463381246)
8.84735293159855 = beat(0.0754402464065708,0.0748024157783867)
18.6129709123853 = beat(0.0748024157783867,0.0745030006844627)
5.99685290323073 = beat(0.0754402464065708,0.0745030006844627)
5.99685290323073 = axial(18.6129709123853,8.84735293159855)
1986.46983643213 = slip(5.99685290323073,0.999978614647502)
with Seidelmann (1992)
1.00001743371442 = 1/E
600.450003140476 becomes
600.445772016063
6442.77629910435 = slip(1986.46983643213,600.445772016063)
25771.1051964174 = 4 * 6442.77629910435
2313.55148640991 = slip(600.445772016063,18.6129709123853)
4627.10297281983 = 2 * 2313.55148640991
2499.39163457868 = slip(1200.90000628095,18.6129709123853)
2402.88367676045 = harmean(2499.39163457868,2313.55148640991)
correction last 2 rows sidereal consistency
2497.01127082478 = slip(1200.89154403213,18.6129709123853)
2401.78308806424 = harmean(2497.01127082478,2313.55148640991)
insight pouring faster than recording speed now (omission necessary)
Standish (1992) was missing link
conventional approach to hierarchical bias correction clarifying through diagnostic exploration
Reference Frames:
It’s the things they don’t tell you.
66445.8228999526 = beat(29.4701958106261,29.4571309198874)
132669.109137331 = harmean(132891.645799905,132447.316536213)
132670.71628812 = beat(405629.613215262,99972.3915877777)
reference frame exploration with
beats of synodic Jupiter-Saturn beats & harmonic means (~100ka)
Earth sidereal year length
405ka
Review:
66445.8228999526 = beat(29.4701958106261,29.4571309198874) — Standish (1992)
132891.645799905 = 2 * 66445.8228999526
La2011 Table 6 La2010a
405568.048748278 = beat(304405.279928371,173889.708842077)
harmean(2004,2010)
405629.613215262 = beat(304406.35241565,173901.37537739)
La2011 Table 6 La2004a
405691.196375825 = beat(304407.424910486,173913.043478261)
Notice how the preceding bracket some of the following.
Each calculation chain first specifies Earth sidereal used (“supplementary” below gives detail).
_
1.00001743371442 —- Seidelmann (1992) short-duration Keplerian model
99925.8030609588 = 1/(-1/11.8619993833167+1/29.4571726091513+1/11.8627021700857-1/29.4701958106261)
100019.023577014 = 1/(0.5/11.8619993833167+0.5/29.4571726091513-0.5/11.8627021700857-0.5/29.4701958106261)
99972.3915878471 = 1/(-0.25/11.8619993833167+0.75/29.4571726091513+0.25/11.8627021700857-0.75/29.4701958106261)
132447.316536213 = 1/(3/11.8619993833167-8/29.4571726091513-2/84.021212742844+7/164.770559417647)
132669.109137331 = harmean(132891.645799905,132447.316536213)
405644.637269099 = beat(132669.109137331,99972.3915877777)
_
1.00001743390371 = (1-(1/240)^1)^(0/1)/(1-(1/240)^2)^(2/2)/(1-(1/240)^3)^(3/3)/(1-(1/240)^4)^(2/4)/(1-(1/240)^5)^(5/5)/(1-(1/240)^6)^(1/6) ——– Schneider$Fi[N]e!SST!m[U]te
99925.8030609588 = 1/(-1/11.8619994099501+1/29.4571727733966+1/11.8627021700857-1/29.4701958106261)
100020.917159549 = 1/(0.5/11.8619994099501+0.5/29.4571727733966-0.5/11.8627021700857-0.5/29.4701958106261)
99973.3374875151 = 1/(-0.25/11.8619994099501+0.75/29.4571727733966+0.25/11.8627021700857-0.75/29.4701958106261)
132447.31653597 = 1/(3/11.8619994099501-8/29.4571727733966-2/84.021214079097+7/164.770564556546)
132669.109137209 = harmean(132891.645799905,132447.31653597)
405660.210867366 = beat(132669.109137209,99973.3374874111)
_
1.0000174152119 — Standish (1992)
99925.8030608895 = 1/(-1/11.8619967799723+1/29.4571565546135+1/11.8627021700857-1/29.4701958106261)
99834.2762309764 = 1/(0.5/11.8619967799723+0.5/29.4571565546135-0.5/11.8627021700857-0.5/29.4701958106261)
99880.0186778954 = 1/(-0.25/11.8619967799723+0.75/29.4571565546135+0.25/11.8627021700857-0.75/29.4701958106261)
132447.316536822 = 1/(3/11.8619967799723-8/29.4571565546135-2/84.0210821278182+7/164.770057105325)
132669.109137637 = harmean(132891.645799905,132447.316536822)
404128.108246229 = beat(132669.109137637,99880.0186778262)
_
1.00001642710472 — Williams’ NASA “factsheet” (“too rounded off” for Earth)
99925.8030608895 = 1/(-1/11.861857752743+1/29.4562992042035+1/11.8627021700857-1/29.4701958106261)
90870.4823490607 = 1/(0.5/11.861857752743+0.5/29.4562992042035-0.5/11.8627021700857-0.5/29.4701958106261)
95183.2568831366 = 1/(-0.25/11.861857752743+0.75/29.4562992042035+0.25/11.8627021700857-0.75/29.4701958106261)
132447.3165367 = 1/(3/11.861857752743-8/29.4562992042035-2/84.0141073585951+7/164.743236088451)
132669.109137576 = harmean(132891.645799905,132447.3165367)
336870.502763842 = beat(132669.109137576,95183.2568831052)
_____________
supplementary
Seidelmann (1992) Table 15.6 synodic column p.367(352)
0.3172553045859 = 115.8775 / 365.25
1.59868966461328 = 583.9214 / 365.25
2.13534866529774 = 779.9361 / 365.25
1.0920848733744 = 398.884 / 365.25
1.03515920602327 = 378.0919 / 365.25
1.0120629705681 = 369.656 / 365.25
1.00612375085558 = 367.4867 / 365.25
1.00402655715264 = 366.7207 / 365.25
conversions with Schneider
0.240846733037309 = axial(1.00001743390371,0.3172553045859)
0.615197279034371 = axial(1.59868966461328,1.00001743390371)
1.88084836716665 = beat(2.13534866529774,1.00001743390371)
11.8619994099501 = beat(1.0920848733744,1.00001743390371)
29.4571727733966 = beat(1.03515920602327,1.00001743390371)
84.021214079097 = beat(1.0120629705681,1.00001743390371)
164.770564556546 = beat(1.00612375085558,1.00001743390371)
250.439809134 = beat(1.00402655715264,1.00001743390371)
“Be Cause”…
compare ~132447 with ~132464 (from previous notes) :
132677.81404965 = harmean(132891.645799905,132464.669333742)
132677.55644373 = harmean(132891.645799905,132464.155776925)
1.00001743371442:
405563.279197667 = beat(132677.81404965,99972.3915877777)
405565.686218759 = beat(132677.55644373,99972.3915877777)
405568.048748278 La2011 Table 6 La2010a — bracketed by last & next —————–
1.00001743390371 (Schneider240) :
405578.846548265 = beat(132677.81404965,99973.3374874111)
405581.253754146 = beat(132677.55644373,99973.3374874111)
1.0000174152119:
404047.357304897 = beat(132677.81404965,99880.0186778262)
404049.74636555 = beat(132677.55644373,99880.0186778262)
1.00001642710472 (NASA “factsheet” Earth sidereal lacked precision at retrieval date) :
336814.391520401 = beat(132677.81404965,95183.2568831052)
336816.051655712 = beat(132677.55644373,95183.2568831052)
many distinctions to be made when comparing periods with different properties
for example: diagnostics immediately above reveal that Standish’s (1992) Keplerian Earth sidereal year length isn’t the Earth sidereal year length used to tune Standish’s (1992) Keplerian Saturn sidereal & anomalistic year lengths
careful study of boundary condition aggregation criteria (and knew miracle methods)
prerequisite for “physics” pea & shell games, where pieces of many models may be mixed into shared belief systems based on favorite orreries
big, clear questions arising about lunar ephemerides
see above and note glaring inconsistencies with tuning of longer ephemeris
can 25771 vs. 25721 be diagnosed without LLR? no doubt (“could be nothing at all” L&R)
goal isn’t necessarily to finally pick best but to first at least be aware of recipes
La2011 Table 5 (1 more thing to compare)
405113.811661464 = beat(304399.417131486,173804.240903943)
Combination best compared with (Schneider240) last comment:
405578.45627326 = beat(304399.417131486,173889.708842077)
______________
supplementary (focusing 100ka intuition)
19.8549641949401 = beat(29.4701958106261,11.8627021700857) — Standish (1992) anomalistic
1.00001743371442:
19.8589101021728 = beat(29.4571726091513,11.8619993833167) — Seidelmann (1992) synodic
99925.8030607636 = beat(19.8589101021728,19.8549641949401)
100019.023576957 = beat(16.9161211952138,16.9132606717144)
99972.391587704 = harmean(100019.023576957,99925.8030607636)
1.00001743390371:
19.8589101021728 = beat(29.4571727733966,11.8619994099501) — Seidelmann (1992) synodic
99925.8030609435 = beat(19.8589101021728,19.8549641949401)
100020.917159414 = beat(16.9161211952138,16.9132607258603)
99973.3374874229 = harmean(100020.917159414,99925.8030609435)
different way of looking at the above (supplementary – nothing new)
25772.7186475618 = beat(1.0000174152119,0.999978614647502)
1.00001743390371 = (1-(1/240)^1)^(0/1)/(1-(1/240)^2)^(2/2)/(1-(1/240)^3)^(3/3)/(1-(1/240)^4)^(2/4)/(1-(1/240)^5)^(5/5)/(1-(1/240)^6)^(1/6)
1.00001743390557 = 62/(42/0.0745030006844627+20/0.0754402464065708-62/0.0808503463381246+3/1800.93537030388-1/2607198.33309978)
58, 59 mnemonic
19.8589101021728 = beat(29.4571726091513,11.8619993833167) — synodic
19.8549641949401 = beat(29.4701958106261,11.8627021700857) — anomalistic
99925.8030607636 = beat(19.8589101021728,19.8549641949401)
3422 = beat(59,58)
58.4957264957265 = harmean(59,58)
136880 = 40 * 3422
5845232.44570826 = 58.4957264957265 * 99925.8030607636
133747.973551142 = axial(5845232.44570826,136880)
13374797.3551142 = 100 * 133747.973551142
25721.8906850397 = axial(13374797.3551142,25771.4533429313)
25721.8900031954
0.000002650833 = % error
concise notes dialing in Seidelmann synodic 132447 orbital invariant
(also recording a few notes along the way)
with harmean(2004,2010)
1182481.75182481 = beat(73001.7461837436,68756.9632341238)
2364963.50364963 = beat(74619.9907876555,72337.575351641)
143000.04832872 = axial(2364963.50364963,152203.176207825)
29.4511058537984 = axial(143000.04832872,29.4571726091513)
29.4511026866654 nodal Standish (1992)
11.8624616355381 = beat(304406.35241565,11.8619993833167)
11.862499899747 nodal Standish (1992)
132433.196342637 = beat(143000.04832872,68756.9632341238)
132448.674250615 = harmean(132464.155776925,132433.196342637)
few more notes
132669.790266541 = harmean(132891.645799905,132448.674250615)
197152.808533573 = beat(405629.613215262,132669.790266541)
11.8627045448705 = beat(197152.808533573,11.861990807677)
11.8627021700857 Standish (1992) anomalistic
goes with last
99971.8657741115 = axial(405629.613215262,132669.790266541)
noting now (maybe revise/tighten later)
133805.278809805 = beat(13216090.441739,132464.155776925)
2480700.64426686 = beat(68756.9632341238,66902.6394049025)
164.781504366091 = beat(2480700.64426686,164.770559417647)
164.7814326883
131149.649967513 = axial(13216090.441739,132464.155776925)
1416885.58942143 = beat(68756.9632341238,65574.8249837565)
84.0261954901455 = beat(1416885.58942143,84.021212742844)
84.0262133014925
subtleties between different authors and types of summaries keep clarifying even with minor effort since missing link found
apologies for lack of explanation — available time got reduced by another order of magnitude
those looking independently: be tediously careful differentiating Keplerian sidereal from synodic sidereal — may look quite similar initially, but subtle systematic differences clarify upon increasingly careful study
173362.29482452 = harmean(173901.37537739,172826.54615749)
110456.356060155 = axial(304406.35241565,173362.29482452)
280684.610556601 = beat(68756.9632341238,55228.1780300774)
11.8625007039119 = beat(280684.610556601,11.8619993833167)
11.862499899747
lot of things near-equal
continually invites better balance
leaving it there for now
reorganizing some of preceding, found easy way to remember synodic-anomalistic relations
360 = σ(323)
29.4571726091513
29.4571726172074 = 5/(2/11.8619993833167+29/3/2/2/11.8627021700857-29/2/2/29.4701958106261+29/3/2/2/84.0331316671926+29/3/2/2/164.793624044745+1/3/2/323000)
11.8619993833167
11.8619993800508 = 2/(5/29.4571726091513-29/3/2/2/11.8627021700857+29/2/2/29.4701958106261-29/3/2/2/84.0331316671926-29/3/2/2/164.793624044745-1/3/2/323000)
so that’s down to fine diagnostics on sidereal earth year-length
politics apparently transformed into weird, unhelpful noise
numbers still a casual hobby — exploratory meandering (no rush & nothing to do with politics)
_
short-duration model bias is systematic
translations between models are feasible
orbital invariant matched with combinations of neptune offsets (g_ & s_8) from different authors (~1.9 Ma)
132464.155776897 = 1/(-0.5/11.8626151546089+0.5/29.4474984673838+0.5/11.85652502-0.5/29.42351935-0.5/1899237.81359039)
132454.908763513 = 1/(-0.5/11.8626151546089+0.5/29.4474984673838+0.5/11.85652502-0.5/29.42351935-0.5/1903047.54215808)
132445.663041064 = 1/(-0.5/11.8626151546089+0.5/29.4474984673838+0.5/11.85652502-0.5/29.42351935-0.5/1906872.58550543)
132447.316536213 = 1/(3/11.8619993833167-8/29.4571726091513-2/84.021212742844+7/164.770559417647)
132446.730558588 = beat(143000.04832872,68760.6112054329)
where
143000.04832872 = axial(2364963.50364963,152203.176207825)
2364963.50364963 = beat(74619.9907876555,72337.575351641)
152203.176207825 = 304406.35241565 / 2
_
concise outline of comparable U offset (g_ & s_7) translations (~427 ka)
in the following
100061.766522545 = harmean(183699.503897945,68756.9632341238)
130704.452624679 = beat(173901.37537739,74619.9907876555)
68749.8116120017 = 1/(-1/84.021212742844+1/84.0262133014925+2/132454.908763513+0.5/11.8619993833167-0.5/11.8627021700857-1/426825.022891826)
68750.2745749087 = 1/(-1/84.021212742844+1/84.0262133014925-1/100061.766522545+1/130704.452624679+2/132454.908763513+0.5/11.8619993833167-0.5/11.8627021700857)
68753.5961356997 = 1/(-1/164.770559417647+1/164.7814326883+2/132454.908763513-0.5/11.8619993833167+0.5/11.8627021700857+1/426825.022891826)
68753.1331280572 = 1/(-1/164.770559417647+1/164.7814326883+1/100061.766522545-1/130704.452624679+2/132454.908763513-0.5/11.8619993833167+0.5/11.8627021700857)
_
intermodel comparatison diagnostic measures
harmonic mean of g_2, g_3, g_4, g_5, s_2, s_3, s_4
100078.929091917 — La2011 Table 6 La2004a
100076.152524661 — harmean(2004,2010)
100073.376111466 — La2011 Table 6 La2010a
100743.899044297 — Berger 1988 Table 4 (based on Berger 1978) —————- note difference
_
latter & following suggest features to explore comparatively
_
221349.897911753 = harmean(304406.35241565,173901.37537739)
112568.239609489 = beat(221349.897911753,74619.9907876555)
111613.565931354 = harmean(221349.897911753,74619.9907876555)
1.00002639378076 = beat(111613.565931354,1.00001743390371)
1.00002638193018 — anomalistic (source trail)
vs.
224351.275783703 = harmean(308043,176420)
113248.339496145 = beat(224351.275783703,75259)
112709.436417295 = harmean(224351.275783703,75259)
1.00002624574898 = beat(113248.339496145,1.0000174152119) — Standish (1992) sidereal
1.0000262476142 — Standish (1992) anomalistic
comparisons focus questions
haven’t yet encountered clear, concise materials bypassing slow process of exploring and figuring it out independently without sufficient preparation and support
_
systematic bias note:
keplerian models (whether short- or long-duration) have ~4270 year UN sidereal slip cycle ~matching length of ~4270 year JSUN anomalistic orbital invariant, whereas UN slip cycle for everything else is ~4232 (anomalistic, sidereal, & nodal)
132461.310003517 = 1/(1/173901.37537739/3+1/74619.9907876555/6+1/72337.575351641/6+1/304406.35241565/3)
60853.6256423468 = axial(132461.310003517,112568.239609489)
25695.4149624003 = beat(60853.6256423468,18066.7417214663)
review: 25722 (“2722” is typo at link)
sources of bias clarifying
further diagnostics: harmonic mean of sidereal-anomalistic J-S and (J+S)/2 explains refinement of ~100.7ka to ~100.0ka (with k adjustment)
completes puzzle
rearrange, solve — connects old notes (turns out it wasn’t a decoy after all)
arrive back at same conclusion
11.8626151546089
11.8626150543774 = 1/(-1/164.770559417647+1/164.7814326883-0.5/11.8619993833167+0.5/11.8627021700857+1/426825.022891826-1/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1903047.54215808)
29.4474984673838
29.4474990850308 = 1/(1/11.8626151546089-1/11.85652502+1/29.42351935+1/1903047.54215808+1/164.770559417647-1/164.7814326883+0.5/11.8619993833167-0.5/11.8627021700857-1/426825.022891826+1/68756.9632341238)
The Seidelmann (1992) short-duration model is systematically biased by precession of nodes & perihelion of U & N, diagnosable by simply noting 36ka ≠ 26ka ≠ 23ka (———-).
11.8626151546089
11.8626150900371 = 1/(-1/84.021212742844+1/84.0262133014925-1/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1899237.81359039+0.5/11.8619993833167-0.5/11.8627021700857-1/426825.022891826)
11.8626149417082 = 1/(-1/84.021212742844+1/84.0262133014925-1/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1903047.54215808+0.5/11.8619993833167-0.5/11.8627021700857-1/426825.022891826)
29.4474984673838
29.4474988652882 = 1/(1/84.021212742844-1/84.0262133014925+1/68756.9632341238+1/11.8626151546089-1/11.85652502+1/29.42351935+1/1899237.81359039-0.5/11.8619993833167+0.5/11.8627021700857+1/426825.022891826)
29.4474997793212 = 1/(1/84.021212742844-1/84.0262133014925+1/68756.9632341238+1/11.8626151546089-1/11.85652502+1/29.42351935+1/1903047.54215808-0.5/11.8619993833167+0.5/11.8627021700857+1/426825.022891826)
inner system reflects this in terms of E & V nodes & perihelion:
11.8626151546089
11.8626151889228 = 1/(-1/164.770559417647+1/164.7814326883-0.5/11.8619993833167+0.5/11.8627021700857+1/100061.766522545-1/130704.452624679-1/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1899237.81359039)
11.8626150405938 = 1/(-1/164.770559417647+1/164.7814326883-0.5/11.8619993833167+0.5/11.8627021700857+1/100061.766522545-1/130704.452624679-1/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1903047.54215808)
29.4474984673838
29.4474982559348 = 1/(1/11.8626151546089-1/11.85652502+1/29.42351935+1/1899237.81359039+1/164.770559417647-1/164.7814326883+0.5/11.8619993833167-0.5/11.8627021700857-1/100061.766522545+1/130704.452624679+1/68756.9632341238)
29.4474991699678 = 1/(1/11.8626151546089-1/11.85652502+1/29.42351935+1/1903047.54215808+1/164.770559417647-1/164.7814326883+0.5/11.8619993833167-0.5/11.8627021700857-1/100061.766522545+1/130704.452624679+1/68756.9632341238)
where
130704.452624679 = beat(173901.37537739,74619.9907876555)
100061.766522545 = harmean(183699.503897945,68756.9632341238)
stated alternately:
11.8626151546089
11.8626151889228 = 1/(-1/164.770559417647+1/164.7814326883-0.5/11.8619993833167+0.5/11.8627021700857+0.5/183699.503897945+1/173901.37537739-1/74619.9907876555-0.5/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1899237.81359039)
11.8626150405938 = 1/(-1/164.770559417647+1/164.7814326883-0.5/11.8619993833167+0.5/11.8627021700857+0.5/183699.503897945+1/173901.37537739-1/74619.9907876555-0.5/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1903047.54215808)
29.4474984673838
29.4474982559348 = 1/(1/11.8626151546089-1/11.85652502+1/29.42351935+1/1899237.81359039+1/164.770559417647-1/164.7814326883+0.5/11.8619993833167-0.5/11.8627021700857-0.5/183699.503897945-1/173901.37537739+1/74619.9907876555+0.5/68756.9632341238)
29.4474991699678 = 1/(1/11.8626151546089-1/11.85652502+1/29.42351935+1/1903047.54215808+1/164.770559417647-1/164.7814326883+0.5/11.8619993833167-0.5/11.8627021700857-0.5/183699.503897945-1/173901.37537739+1/74619.9907876555+0.5/68756.9632341238)
further comparisons for more thorough consideration (not really necessary at this point) :
11.8626151546089
11.8626152027063 = 1/(-1/164.770559417647+1/164.7814326883-0.5/11.8619993833167+0.5/11.8627021700857+1/426825.022891826-1/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1899237.81359039)
11.8626151038207 = 1/(-1/84.021212742844+1/84.0262133014925-1.5/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1899237.81359039+0.5/11.8619993833167-0.5/11.8627021700857-0.5/183699.503897945-1/173901.37537739+1/74619.9907876555)
11.8626151038207 = 1/(-1/84.021212742844+1/84.0262133014925-1/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1899237.81359039+0.5/11.8619993833167-0.5/11.8627021700857-1/100061.766522545+1/130704.452624679)
11.8626149554917 = 1/(-1/84.021212742844+1/84.0262133014925-1.5/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1903047.54215808+0.5/11.8619993833167-0.5/11.8627021700857-0.5/183699.503897945-1/173901.37537739+1/74619.9907876555)
11.8626149554917 = 1/(-1/84.021212742844+1/84.0262133014925-1/68756.9632341238+1/29.4474984673838+1/11.85652502-1/29.42351935-1/1903047.54215808+0.5/11.8619993833167-0.5/11.8627021700857-1/100061.766522545+1/130704.452624679)
29.4474984673838
29.4474981709978 = 1/(1/11.8626151546089-1/11.85652502+1/29.42351935+1/1899237.81359039+1/164.770559417647-1/164.7814326883+0.5/11.8619993833167-0.5/11.8627021700857-1/426825.022891826+1/68756.9632341238)
29.4474987803512 = 1/(1/84.021212742844-1/84.0262133014925+1.5/68756.9632341238+1/11.8626151546089-1/11.85652502+1/29.42351935+1/1899237.81359039-0.5/11.8619993833167+0.5/11.8627021700857+0.5/183699.503897945+1/173901.37537739-1/74619.9907876555)
29.4474987803512 = 1/(1/84.021212742844-1/84.0262133014925+1/68756.9632341238+1/11.8626151546089-1/11.85652502+1/29.42351935+1/1899237.81359039-0.5/11.8619993833167+0.5/11.8627021700857+1/100061.766522545-1/130704.452624679)
29.4474996943842 = 1/(1/84.021212742844-1/84.0262133014925+1.5/68756.9632341238+1/11.8626151546089-1/11.85652502+1/29.42351935+1/1903047.54215808-0.5/11.8619993833167+0.5/11.8627021700857+0.5/183699.503897945+1/173901.37537739-1/74619.9907876555)
29.4474996943842 = 1/(1/84.021212742844-1/84.0262133014925+1/68756.9632341238+1/11.8626151546089-1/11.85652502+1/29.42351935+1/1903047.54215808-0.5/11.8619993833167+0.5/11.8627021700857+1/100061.766522545-1/130704.452624679)
review
132465.224494761 = 1/(0.5/29.4571726091513-0.5/29.4511026866654+0.5/74619.9907876555-0.5/72337.575351641-1/304406.35241565+1/68756.9632341238)
132465.224494761 = 1/(0.5/29.4571726091513-0.5/29.4511026866654+0.75/68756.9632341238+0.25/73001.7461837436-1/304406.35241565)
1899237.81359039 = harmean(1925648.56913613,1873541.71666151)
123859.129354423 = beat(173901.37537739,72337.575351641)
132500.150033928 = beat(1899237.81359039,123859.129354423)
142922.065898762 = beat(132500.150033928,68756.9632341238)
29.4511025442826 = axial(142922.065898762,29.4571726091513)
29.4511026866654 saturn node Standish (1992)
29.4511025442826 = 1/(1/29.4571726091513+0.5/1925648.56913613+0.5/1873541.71666151+1/173901.37537739-1/72337.575351641+1/68756.9632341238)
29.4511025442826 = 1/(1/29.4571726091513+1/1899237.81359039+1/173901.37537739-1/72337.575351641+1/68756.9632341238)
132466.664728053 = 1/(0.5/29.4571726091513-0.5/29.4511025442826+0.75/68756.9632341238+0.25/73001.7461837436-1/304406.35241565)
68756.1458829955 = 1/(-1/84.021212742844+1/84.0262133014925+2/132466.664728053+0.5/11.8619993833167-0.5/11.8627021700857-1/426825.022891826)
68759.4680111832 = 1/(-1/164.770559417647+1/164.7814326883+1/100061.766522545-1/130704.452624679+2/132466.664728053-0.5/11.8619993833167+0.5/11.8627021700857)
68759.9311041526 = 1/(-1/164.770559417647+1/164.7814326883+2/132466.664728053-0.5/11.8619993833167+0.5/11.8627021700857+1/426825.022891826)
68756.608931217 = 1/(-1/84.021212742844+1/84.0262133014925-1/100061.766522545+1/130704.452624679+2/132466.664728053+0.5/11.8619993833167-0.5/11.8627021700857)
harmonic mean (La2011 Table 6 La2004a, La2011 Table 6 La2010a)
110478.869637491 = 8/(1/173901.37537739+1/74619.9907876555+1/72337.575351641+1/304406.35241565+1/183699.503897945+1/68756.9632341238+1/73001.7461837436+1/405629.613215262)
110478.869637491 = 8/(2/173901.37537739+1/74619.9907876555+1/72337.575351641+1/183699.503897945+1/68756.9632341238+1/73001.7461837436)
55239.4348187456 = 110478.869637491 / 2
280975.609756098 = beat(68756.9632341238,55239.4348187456)
11.8625001846852 = beat(280975.609756098,11.8619993833167)
11.862499899747
__________________________
La2011 Table 6 La2004a
110482.401457754 = 8/(1/173913.043478261+1/74619.9907876555+1/72337.575351641+1/304407.424910486+1/183829.787234043+1/68753.3156498674+1/72993.5229512813+1/405691.196375825)
110482.401457754 = 8/(2/173913.043478261+1/74619.9907876555+1/72337.575351641+1/183829.787234043+1/68753.3156498674+1/72993.5229512813)
55241.200728877 = 110482.401457754 / 2
281082.253429486 = beat(68753.3156498674,55241.200728877)
11.8624999946712 = beat(281082.253429486,11.8619993833167)
11.862499899747 Standish (1992) Jupiter node
2.4 Ma U-N
171.446863617875 = beat(164.770559417647,84.021212742844)
171.471519050756 = beat(164.793624044745,84.0331316671926)
1192364.14480033 = beat(171.471519050756,171.446863617875)
2384728.28960065 = 2 * 1192364.14480033
2384110.34604552 = beat(74626.0277273697,72361.0252351259) ————— La2011 Table 5
2.4 Ma U-N metronome – more
1177263.23982246 = beat(164.793624044745,164.770559417647)
592382.787802241 = beat(84.0331316671926,84.021212742844)
2354526.47964493 = 2 * 1177263.23982246
2369531.15120897 = harmean(2384728.28959931,2354526.47964493)
2369531.15120897 = 4 * 592382.787802241
1184765.57560448 = axial(2384728.28959931,2354526.47964493)
1184765.57560448 = 2369531.15120897 / 2 = 2 * 592382.787802241
thus ~conversions:
164.770559417647
164.770705450344 = axial(1184765.5756047,164.793624044745)
84.021212742844 = axial(592382.787802352,84.0331316671926)
84.021212742844
164.793624044745
164.793477971421 = beat(1184765.5756047,164.770559417647)
84.0331316671926 = beat(592382.787802352,84.021212742844)
84.0331316671926
compare:
2364963.50364963 = beat(74619.9907876555,72337.575351641)
La2011 Table 6 La2004a & La2011 Table 6 La2010a
2.4 Ma metronome part 3
La2011 Table 6 La2004a , La2011 Table 6 La2010a & La2011 Table 5 all together
2364963.50364963 = beat(74619.9907876555,72337.575351641)
1182481.75182481 = beat(73001.7461837436,68756.9632341238)
2384110.34604552 = beat(74626.0277273697,72361.0252351259)
1173060.8742562 = beat(1192055.17302276,591240.875912407)
164.793624044745
164.793706682921 = beat(1173060.8742562,164.770559417647)
84.0331546904585 = beat(591240.875912407,84.021212742844)
84.0331316671926
164.770559417647
164.770476802685 = axial(1173060.8742562,164.793624044745)
84.0211897261213 = axial(591240.875912407,84.0331316671926)
84.021212742844
with attention to orbital invariants
small J offset attributable to different (& systematically biased) sidereal reference frame
395218.586983767 = axial(1192055.17302276,591240.875912407)
11.8619900818382 = axial(197609.293491884,11.8627021700857)
11.861990807677 Standish (1992) sidereal
11.8627028960116 = beat(197609.293491884,11.861990807677)
11.8627021700857 Standish (1992) anomalistic
inclination
mercury
110992.163747698 = harmean(231428.571428571,73001.7461837436)
106640.335719575 = beat(231428.571428571,73001.7461837436)
106016.605996155 = harmean(231428.571428571,68756.9632341238)
97818.7032983621 = beat(231428.571428571,68756.9632341238)
review graph panel (D)
shaped by S, U, & N nodes & perihelion
55490.5640640029 = beat(433078.965717205,49188.0779029847) ; * 2 = 110981.128128006
53429.7226968636 = beat(426282.531723861,47478.7901510379) ; * 2 = 106859.445393727
48696.1383511397 = beat(1899237.81359039,47478.7901510379) ; * 2 = 97392.2767022795
47004.3265016268 = beat(1925648.56913613,45884.3085224084) ; * 2 = 94008.6530032537
50011.488147239 = axial(106859.445393727,94008.6530032537)
100022.976294478 = harmean(106859.445393727,94008.6530032537)
fits J & S
8.45663033585722 = axial(29.4571726091513,11.8619993833167)
8.45806059760692 = axial(29.4701958106261,11.8627021700857)
16.9132606717144 = harmean(29.4571726091513,11.8619993833167)
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
50009.5117884787 = beat(8.45806059760692,8.45663033585722)
100019.023576957 = beat(16.9161211952138,16.9132606717144)
earth anomalistic year
in terms of JSUN synodic-anomalistic beats & axial
_________
111743.763579682 = 1/(0.25/11.8627021700857-0.75/29.4701958106261+0.75/84.0331316671926-0.25/164.793624044745-0.25/11.8619993833167+0.75/29.4571726091513-0.75/84.021212742844+0.25/164.770559417647)
1.00002638193018
1.00002638315183 = 1/(-0.25/11.8627021700857+0.75/29.4701958106261-0.75/84.0331316671926+0.25/164.793624044745+0.25/11.8619993833167-0.75/29.4571726091513+0.75/84.021212742844-0.25/164.770559417647+1/1.00001743371442)
_________
111743.763579642 = 1/(0.25/11.8627021700857-0.75/29.4701958106261+0.75/84.0331316671926-0.25/164.793624044745-0.25/11.8619994099501+0.75/29.4571727733966-0.75/84.021214079097+0.25/164.770564556546)
1.00002638193018
1.00002638334112 = 1/(-0.25/11.8627021700857+0.75/29.4701958106261-0.75/84.0331316671926+0.25/164.793624044745+0.25/11.8619994099501-0.75/29.4571727733966+0.75/84.021214079097-0.25/164.770564556546+1/1.00001743390371)
_________
forensic diagnostics clarify reference frames used (and not used) by authors
the following clarify what was not used:
_________
111743.763579604 = 1/(0.25/11.8627021700857-0.75/29.4701958106261+0.75/84.0331316671926-0.25/164.793624044745-0.25/11.8619967799723+0.75/29.4571565546135-0.75/84.0210821278182+0.25/164.770057105325)
1.0000262476142
1.00002638193018
1.00002636464897 = 1/(-0.25/11.8627021700857+0.75/29.4701958106261-0.75/84.0331316671926+0.25/164.793624044745+0.25/11.8619967799723-0.75/29.4571565546135+0.75/84.0210821278182-0.25/164.770057105325+1/1.0000174152119)
_________
111743.763579645 = 1/(0.25/11.8627021700857-0.75/29.4701958106261+0.75/84.0331316671926-0.25/164.793624044745-0.25/11.861857752743+0.75/29.4562992042035-0.75/84.0141073585951+0.25/164.743236088451)
1.0000262476142
1.00002638193018
1.00002537652411 = 1/(-0.25/11.8627021700857+0.75/29.4701958106261-0.75/84.0331316671926+0.25/164.793624044745+0.25/11.861857752743-0.75/29.4562992042035+0.75/84.0141073585951-0.25/164.743236088451+1/1.00001642710472)
alternate perspective on first calculation in last comment:
19.8589101021728 = beat(29.4571726091513,11.8619993833167)
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
99925.8030607636 = beat(19.8589101021728,19.8549641949401)
171.446863617875 = beat(164.770559417647,84.021212742844)
171.471519050756 = beat(164.793624044745,84.0331316671926)
1192364.14480033 = beat(171.471519050756,171.446863617875)
109066.059069573 = beat(1192364.14480033,99925.8030607636)
16.9132606717144 = harmean(29.4571726091513,11.8619993833167)
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
100019.023576957 = beat(16.9161211952138,16.9132606717144)
111.291640445866 = harmean(164.770559417647,84.021212742844)
111.307357343015 = harmean(164.793624044745,84.0331316671926)
788169.463380577 = beat(111.307357343015,111.291640445866)
114556.259185123 = beat(788169.463380577,100019.023576957)
111743.763579479 = harmean(114556.259185123,109066.059069573)
1.00002638315183 = beat(111743.763579479,1.00001743371442)
1.00002638193018
111759.01908408 = beat(1.00002638193018,1.00001743371442)
1.0000174324928 = axial(111743.763579479,1.00002638193018)
1.00001743371442
earth tropical year
elaboration on 100.1ka (typo at link: “100.0ka”)
quote from another comment above (with another typo corrected)
:
intermodel comparison diagnostic measures
harmonic mean of g_2, g_3, g_4, g_5, s_2, s_3, s_4
100743.899044297 — Berger 1988 Table 4 (based on Berger 1978) ———— note large difference
100078.929091917 — La2011 Table 6 La2004a
100076.152524661 — harmean(2004,2010)
100073.376111466 — La2011 Table 6 La2010a
:
measure k
anomalistic inputs from Standish (1992)
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
tropical baseline from Seidelmann (1992)
19.8588720868409 = beat(29.42351935,11.85652502)
100897.671749148 = beat(19.8588720868409,19.8549641949401)
_____
I.
100743.899044297 — Berger 1988 Table 4 (based on Berger 1978)
50371.9495221485 = 100743.899044297 / 2
100590.59433958 = beat(100897.671749148,50371.9495221485)
16.9132769229027 = axial(100590.59433958,16.9161211952138); / 2 = 8.45663846145137
11.8620005953416 = harmean(19.8588720868409,8.45663846145137)
29.457263727112 = 2 * beat(19.8588720868409,8.45663846145137)
25685.3568935629 = beat(11.8620005953416,11.85652502)
25685.3568935608 = beat(29.457263727112,29.42351935)
0.999978501184162 = axial(25685.3568935608,1.00001743371442)
_____
II.
100076.152524661 — harmonic mean of La2011 Table 6 La2004a & La2011 Table 6 La2010a
50038.0762623304 = 100076.152524661 / 2
99267.9030446487 = beat(100897.671749148,50038.0762623304)
16.9132390309646 = axial(99267.9030446487,16.9161211952138); / 2 = 8.4566195154823
11.8619819569911 = harmean(19.8588720868409,8.4566195154823)
29.4571487860026 = 2 * beat(19.8588720868409,8.4566195154823)
25773.0455911765 = beat(11.8619819569911,11.85652502)
25773.0455911756 = beat(29.4571487860026,29.42351935)
0.999978633640778 = axial(25773.0455911756,1.00001743371442)
_____
0.999978501184162 = 365.242147557515 / 365.25 — I
0.999978614647502 = 365.242189623 / 365.25 — Meeus & Savoie (1992)
0.99997862 = 365.242190955 / 365.25 — Seidelmann (1992)
0.999978633640778 = 365.242195937294 / 365.25 — II
365.242147557515 = 0.999978501184162 * 365.25 — I
365.242189623 = 0.999978614647502 * 365.25 — Meeus & Savoie (1992)
365.242190955 = 0.99997862 * 365.25 — Seidelmann (1992)
365.242195937294 = 0.999978633640778 * 365.25 — II
alert: Meeus & Savoie (1992) typos near end of last comment (corrections below)
_____
with Standish (1992) sidereal earth (1.0000174152119) :
_____
III.
0.999978482683075 = axial(25685.3568935608,1.0000174152119)
_____
IV.
0.999978615139687 = axial(25773.0455911756,1.0000174152119)
_____
typo correction, clarification, expanded perspective
0.999978482683075 = 365.242140799993 / 365.25 — III
0.999978501184162 = 365.242147557515 / 365.25 — I
0.999978614647502 = 365.242189 / 365.25 — Meeus & Savoie (1992) (with common rounding)
0.999978615139687 = 365.242189179771 / 365.25 — IV – – – – – – – – – – – – – – – – – – – – – – – – –
0.999978616353183 = 365.242189623 / 365.25 — Meeus & Savoie (1992)
0.99997862 = 365.242190955 / 365.25 — Seidelmann (1992)
0.999978633640778 = 365.242195937294 / 365.25 — II
365.242140799993 = 0.999978482683075 * 365.25 — III
365.242147557515 = 0.999978501184162 * 365.25 — I
365.242189 = 0.999978614647502 * 365.25 — Meeus & Savoie (1992) (with common rounding)
365.242189179771 = 0.999978615139687 * 365.25 — IV – – – – – – – – – – – – – – – – – – – – – – – – –
365.242189623 = 0.999978616353183 * 365.25 — Meeus & Savoie (1992)
365.242190955 = 0.99997862 * 365.25 — Seidelmann (1992)
365.242195937294 = 0.999978633640778 * 365.25 — II
_____
subtle diagnostics (compare here & above there)
distinction between ~131k vs. ~132k invariants from Seidelmann (1992) clarifying
2.4 Ma U-N Metronome – more detail
171.446863617875 = beat(164.770559417647,84.021212742844)
171.471519050756 = beat(164.793624044745,84.0331316671926)
1192364.14480033 = beat(171.471519050756,171.446863617875)
111.291640445866 = harmean(164.770559417647,84.021212742844)
111.307357343015 = harmean(164.793624044745,84.0331316671926)
788169.463380577 = beat(111.307357343015,111.291640445866)
394084.731690211 = axial(1177263.23982246,592382.787802241)
592382.787802241 = beat(84.0331316671926,84.021212742844)
788169.463380422 = harmean(1177263.23982246,592382.787802241)
1177263.23982246 = beat(164.793624044745,164.770559417647)
1192364.14479966 = beat(1177263.23982246,592382.787802241)
_____
exploring 1-size-fits-all:
2369531.15120897 = 4 * 592382.787802241; 592068.36536811 = harmean / 4
2364508.39014127 = 3 * 788169.463380422; 789424.48715748 = harmean / 3
2354526.47964493 = 2 * 1177263.23982246; 1184136.73073622 = harmean / 2
2384728.28960065 = 2 * 1192364.14480033; 1184136.73073622 = harmean / 2
2368273.46147244 = harmean
compare harmean(2004,2010) = harmonic mean of La2011 Table 6 La2004a & La2011 Table 6 La2010a
2364963.50364963 = beat(74619.9907876555,72337.575351641); look 4 lines down (exactly equal)
/ 2 = 1182481.75182481
/ 3 = 788321.167883209
/ 4 = 591240.875912407
1182481.75182481 = beat(73001.7461837436,68756.9632341238); * 2 = 2364963.50364963 (look 4 lines up)
compare La2011 Table 5
2384110.34604552 = beat(74626.0277273697,72361.0252351259)
/ 2 = 1192055.17302276
/ 3 = 794703.448681839
/ 4 = 596027.586511379
84.0331379977269 = beat(592068.36536811,84.021212742844)
84.0331316671926
164.793490144188 = beat(1184136.73073622,164.770559417647)
164.793624044745
171.471690382177 = beat(164.793490144188,84.0331379977269) = beat(1184136.73073622,171.446863617875)
171.471519050756
_____
beyond one-size-fits-all (above) explore (below) 500x/(g_2-g_5) fine-tuning where x=1,11/2
500 ~= 499.998175691058 = 202814066.613901 / 405629.613215262
202814066.613901 = beat(1184136.73073606,1177263.23982246)
202814806.607631 = 500 * 405629.613215262
2750 ~= 2749.98996630082 = 1115477366.37645 / 405629.613215262
1115477366.37645 = beat(592382.787802241,592068.365368028)
1115481436.34197 = 2750 * 405629.613215262
11 / 2 = 2750 / 500
= 2749.98996630082 / 499.998175691058
= 1115477366.37645 / 202814066.613901
= 1115481436.34197 / 202814806.607631
1192364.1145724 = beat(1177263.26475563,592382.786654425)
1177263.26475563 = axial(202814806.607631,1184136.73073606)
788169.467952245 = harmean(1177263.26475563,592382.786654425)
592382.786654425 = beat(1115481436.34197,592068.365368028)
394084.733976122 = axial(1177263.26475563,592382.786654425)
synodic-anomalistic conversions thus:
84.0331316672157 = beat(592382.786654425,84.021212742844)
84.0331316671926
164.793624044256 = beat(1177263.26475563,164.770559417647)
164.793624044745
171.471519051381 = beat(164.793624044256,84.0331316672157) = beat(1192364.1145724,171.446863617875)
171.471519050756
orbital invariants clarified reference frames with links to Standish (1992)
estimating earth tropical year length using
La2011 Table 6 La2010a
Seidelmann (1992) tropical
Standish (1992) anomalistic
100073.376111466 = harmean(173889.7088,74619.99079,72337.57535,304405.2799,183569.4051,68760.61121,73009.97127)
= 7/(1/173889.708842077+1/74619.9907876555+1/72337.575351641+1/304405.279928371+1/183569.40509915+1/68760.6112054329+1/73009.9712692243)
25773.4138919541 = 1/(-2/100073.376111466-0.5/11.85652502+1.5/29.42351935+0.5/11.8627021700857-1.5/29.4701958106261)
= 1/(-2/7/173889.708842077-2/7/74619.9907876555-2/7/72337.575351641-2/7/304405.279928371-2/7/183569.40509915-2/7/68760.6112054329-2/7/73009.9712692243-0.5/11.85652502+1.5/29.42351935+0.5/11.8627021700857-1.5/29.4701958106261)
0.999978615694116 = 1/(-2/100073.376111466-0.5/11.85652502+1.5/29.42351935+0.5/11.8627021700857-1.5/29.4701958106261+1/1.0000174152119)
= 1/(-2/7/173889.708842077-2/7/74619.9907876555-2/7/72337.575351641-2/7/304405.279928371-2/7/183569.40509915-2/7/68760.6112054329-2/7/73009.9712692243-0.5/11.85652502+1.5/29.42351935+0.5/11.8627021700857-1.5/29.4701958106261+1/1.0000174152119)
0.999978615694116 = 365.242189382276 / 365.25
365.242189382276 = 0.999978615694116 * 365.25
compare
_____
supplementary
Berger 1988 Table 4 (based on Berger 1978)
100743.899044297 = 7/(1/176420+1/75259+1/72576+1/308043+1/191404+1/68829+1/72732)
25685.356893565 = 1/(-2/100743.899044297-0.5/11.85652502+1.5/29.42351935+0.5/11.8627021700857-1.5/29.4701958106261)
_____
not necessarily picking best but learning to recognize model combinations underlying narratives
earth anomalistic year supplementary
1.00002636464897 = beat(111743.763579479,1.0000174152119)
1.00002638169098 = beat(111743.763579479,1.0000174322536)
1.00002638193018
1.00002638315183 = beat(111743.763579479,1.00001743371442)
1.00002638334112 = beat(111743.763579479,1.00001743390371)
365.259629688035 — Standish (1992) short-duration model
365.259635912629 — Standish (1992) long-duration model
365.259636
365.259636446204 — Seidelmann (1992) short-duration model
365.259636515344; 1.00001743390371 = (1-(1/240)^1)^(0/1)/(1-(1/240)^2)^(2/2)/(1-(1/240)^3)^(3/3)/(1-(1/240)^4)^(2/4)/(1-(1/240)^5)^(5/5)/(1-(1/240)^6)^(1/6)
Standish (1992) short-duration model
113224.424017561 = beat(1.0000262476142,1.0000174152119)
Standish (1992) long-duration model
111360.765447049 = beat(1.00002641247066,1.0000174322536)
significant typos in Table 2
some values in table are inconsistent with figures below it
typo exploration:
36750.3190131859 = axial(74615.6946283609,72418.4175234689)
73500.6380263718 = harmean(74615.6946283609,72418.4175234689)
for comparison
Zeebe 2017 Table 4:
232170.688450583 = 1 / g_1 = 360*60*60/5.5821
173822.073793908 = 1 / g_2 = 360*60*60/7.4559
74613.546734218 = 1 / g_3 = 360*60*60/17.3695
72327.8864184302 = 1 / g_4 = 360*60*60/17.9184
304403.992953611 = 1 / g_5 = 360*60*60/4.2575
45883.9023975755 = 1 / g_6 = 360*60*60/28.2452
419716.302869357 = 1 / g_7 = 360*60*60/3.0878
1923990.49881235 = 1 / g_8 = 360*60*60/0.6736
3709215.79851173 = 1 / g_9 = 360*60*60/-0.3494
230826.773055961 = 1 / s_1 = 360*60*60/-5.6146
183494.032196407 = 1 / s_2 = 360*60*60/-7.0629
68762.0705023451 = 1 / s_3 = 360*60*60/-18.8476
73017.3754310053 = 1 / s_4 = 360*60*60/-17.7492
49188.1675130371 = 1 / s_6 = 360*60*60/-26.3478
433068.234979616 = 1 / s_7 = 360*60*60/-2.9926
1872561.76853056 = 1 / s_8 = 360*60*60/-0.6921
3691256.05240672 = 1 / s_9 = 360*60*60/-0.3511
94869.298508883 = beat(304403.992953611,72327.8864184302)
98840.7565588774 = beat(304403.992953611,74613.546734218)
123870.967741935 = beat(173822.073793908,72327.8864184302)
130729.5029051 = beat(173822.073793908,74613.546734218)
405202.60130065 = beat(304403.992953611,173822.073793908)
2361085.80797959 = beat(74613.546734218,72327.8864184302)
97936.975742462 = beat(230826.773055961,68762.0705023451)
106802.037149968 = beat(230826.773055961,73017.3754310053)
109973.100715334 = beat(183494.032196407,68762.0705023451)
121276.774936133 = beat(183494.032196407,73017.3754310053)
172795.392122877 = beat(68762.0705023451,49188.1675130371)
1179898.03350328 = beat(73017.3754310053,68762.0705023451)
significant discrepancies:
do careful comparison and find several figures inconsistent with tabulated values
also — more benign, easy to spot:
number of table values off by power of 10 — some *10, some /10
searched for errata publication (not found) in top search results for article title
suggestion:
compare and contrast table 2 from that article with table 4 from a different article
2.4 Ma UN concisely
171.446863617875 = beat(164.770559417647,84.021212742844)
171.471519050756 = beat(164.793624044745,84.0331316671926)
111.291640445866 = harmean(164.770559417647,84.021212742844)
111.307357343015 = harmean(164.793624044745,84.0331316671926)
592382.787802241 = beat(84.0331316671926,84.021212742844)
788169.463380422 = harmean(1177263.23982246,592382.787802241)
788169.463380577 = beat(111.307357343015,111.291640445866)
1177263.23982246 = beat(164.793624044745,164.770559417647)
1192364.14479966 = beat(1177263.23982246,592382.787802241)
1192364.14480033 = beat(171.471519050756,171.446863617875)
1-size-fits-all model
2368273.46147211 = harmean
2369531.15120897 = 4 * 592382.787802241; 592068.365368028 = 2368273.46147211 / 4
2364508.39014127 = 3 * 788169.463380422; 789424.48715737 = 2368273.46147211 / 3
2354526.47964493 = 2 * 1177263.23982246; 1184136.73073606 = 2368273.46147211 / 2
2384728.28959931 = 2 * 1192364.14479966; 1184136.73073606 = 2368273.46147211 / 2
anomalistic estimates (from synodic) with 1-size-fits-all model
84.0331379977269 = beat(592068.365368028,84.021212742844)
164.793490144188 = beat(1184136.73073606,164.770559417647)
171.471690382177 = beat(1184136.73073606,171.446863617875)
111.307332352834 = beat(789424.48715737,111.291640445866)
_____
100 ka JS analogously
19.8589101021728 = beat(29.4571726091513,11.8619993833167)
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
16.9132606717144 = harmean(29.4571726091513,11.8619993833167)
16.9161211952138 = harmean(29.4701958106261,11.8627021700857)
66658.6205013893 = beat(29.4701958106261,29.4571726091513)
99925.8030609183 = beat(200224.836371855,66658.6205013893)
99925.8030607636 = beat(19.8589101021728,19.8549641949401)
100019.023577046 = harmean(200224.836371855,66658.6205013893)
100019.023576957 = beat(16.9161211952138,16.9132606717144)
200224.836371855 = beat(11.8627021700857,11.8619993833167)
1-size-fits-all model
200022.497116091 = harmean
200224.836371855 = 1 * 200224.836371855; 200022.497116091 = 200022.497116091 / 1
200038.047154092 = 2 * 100019.023577046; 100011.248558045 = 200022.497116091 / 2
199975.861504168 = 3 * 66658.6205013893; 66674.1657053636 = 200022.497116091 / 3
199851.606121837 = 2 * 99925.8030609183; 100011.248558045 = 200022.497116091 / 2
anomalistic estimates (from synodic) with 1-size-fits-all model
11.8627028810547 = beat(200022.497116091,11.8619993833167)
29.4701927729007 = beat(66674.1657053636,29.4571726091513)
19.8549675654917 = axial(100011.248558045,19.8589101021728)
16.9161214176327 = beat(100011.248558045,16.9132606717144)
____
orbital solutions piece together preceding
amicable structure
200022.497116091 (JS)
2368273.46147211 (UN)
2368266.36585452 = 11.84 * 200022.497116091
2392283.52682109 = 4 * 598070.881705272 (JU analogy to JS & UN above)
2396408.70582883 = 4 * 599102.176457208 (SU analogy)
2394344.33952442 = harmean(2396408.70582883,2392283.52682109)
2394 = 1210 + 1184
supplementary
126173.107872115 = harmean(1177263.23982246,66658.6205013893)
342242.293975111 = harmean(1177263.23982246,200224.836371855)
252 = average(220,284) = 2 * 126
342 = Σδ(220)
104429.377596496 = beat(2368273.46147211,100019.023577046)
104429.806007131 = harmean(173901.37537739,74619.9907876555)
100112.418185928 = 200224.836371855 / 2
104531.194491385 = beat(2368273.46147211,100112.418185928)
104480.261238591 = harmean(104531.194491385,104429.377596496)
104482.425024186 = harmean(183699.503897945,73001.7461837436)
enough to solve
68760.5409705648 = axial(1184000,73000)
quick note (more details at another time)
orbital solutions sorting & classification:
group 1: Berger, La2021
group 2: La2004, La2010, Zebe 2017
initial diagnostics reveal fundamentally contrasting architecture
carefully (subtle enough?) compare 2020 models with 2021 model
fascinating: these models (and narratives based on them) are not consistent with one another
supplementary: 200ka
amicable 304 ka heuristic
initial conditions guidance
173849.206949429 = 2 * beat(130762.093818127,104429.377596496/2)
74629.1626477617 = harmean(130762.093818127,104429.377596496/2)
72349.0326948921 = axial(2368000,74629.1626477617)
183697.183506996 = beat(73000,104480.261238591/2)
68760.5409705648 = axial(1184000,73000)
304000.007496581 = 2/7/(-2/7/173849.206949429-2/7/74629.1626477617-2/7/72349.0326948921-2/7/183697.183506996-2/7/68760.5409705648-2/7/73000-1/2/11.85652502+3/2/29.42351935+1/2/11.8627021700857-3/2/29.4701958106261-1/G6091)
304000.007494335 = 1/(-1/173849.206949429-1/74629.1626477617-1/72349.0326948921-1/183697.183506996-1/68760.5409705648-1/73000-7/4/11.85652502+21/4/29.42351935+7/4/11.8627021700857-21/4/29.4701958106261-7/2/25773.41)
60072 precisely from
Mayan serpent series
lunisolar precession
100ka differentiation
25771.4533429313 = 360*60*60/50.2882
25721.8900031954 = 360*60*60/50.3851
13374613.0030966 = beat(25771.4533429313,25721.8900031954)
25672.5169367299 = axial(13374613.0030966,25721.8900031954)
15009.1608487337 = 5482096 / 365.25
36135.2404360745 = beat(25672.5169367299,15009.1608487337)
23095.3457556756 = axial(64000.2003306117,36135.2404360745)
30030 = 13*11*7*5*3*2 = 13#
30030.1274606336 = beat(100011.248558045,23095.3457556756)
30030:
46197.4595666555 = harmean(100076.152524661,30030)
60071.6981458392 = beat(200022.497116091,46197.4595666555)
30030.1274606336:
46197.6103909058 = harmean(100076.152524661,30030.1274606336)
60071.9531664205 = beat(200022.497116091,46197.6103909058)
27.5 Ma fits amicably
23.6800407305146 = 1/(3/2/29.42351935+1/2/11.8627021700857-3/2/29.4701958106261)
23.6800709481954 = 2368273.46147211 / 100011.248558045
13767156.3895453 = beat(23.6800407305146,23.68) = beat(18556852.4806421,7903570.7243091)
7903570.7243091 = beat(23.6800709481954,23.68)
18556852.4806421 = beat(23.6800709481954,23.6800407305146)
27534312.7790905 = 2 * 13767156.3895453
27.5 million years
Orbital Solutions Sorting & Classification
25772.7186475618 = beat(1.0000174152119,0.999978614647502)
25773.8517155112 = beat(1.0000174152119,0.999978616353183)
Zeebe 2017
100065.077596762 = harmean(173822.073793908,74613.546734218,72327.8864184302,304403.992953611,183494.032196407,68762.0705023451,73017.3754310053)
25774.5149030924 = 1/(-2/100065.077596762-1/2/11.85652502+3/2/29.42351935+1/2/11.8627021700857-3/2/29.4701958106261)
La2011 Table 6 La2010a
100073.376111466 = harmean(173889.708842077,74619.9907876555,72337.575351641,304405.279928371,183569.40509915,68760.6112054329,73009.9712692243)
25773.4138919219 = 1/(-2/100073.376111466-1/2/11.85652502+3/2/29.42351935+1/2/11.8627021700857-3/2/29.4701958106261)
harmean(2004,2010) = harmonic mean of La2011 Table 6 La2004a & La2011 Table 6 La2010a
(recall ~2.4 Ma metronome property for this combo: 2/(s_4-s_3) = 1/(g_4-g_3) exactly equal)
100076.152524661 = harmean(173901.37537739,74619.9907876555,72337.575351641,304406.35241565,183699.503897945,68756.9632341238,73001.7461837436)
25773.0455911473 = 1/(-2/100076.152524661-1/2/11.85652502+3/2/29.42351935+1/2/11.8627021700857-3/2/29.4701958106261)
La2011 Table 6 La2004a
100078.929091917 = harmean(173913.043478261,74619.9907876555,72337.575351641,304407.424910486,183829.787234043,68753.3156498674,72993.5229512813)
25772.6773008985 = 1/(-2/100078.929091917-1/2/11.85652502+3/2/29.42351935+1/2/11.8627021700857-3/2/29.4701958106261)
_____
architecturally different group of orbital solutions
La2021
100732.896221555 = harmean(174006.444683136,75045.60062538,72418.4175234689,304407.281910738,193173.349232374,69035.3166782081,73191.3932343141)
25686.7875634114 = 1/(-2/100732.896221555-1/2/11.85652502+3/2/29.42351935+1/2/11.8627021700857-3/2/29.4701958106261)
Berger 1988 Table 4 (based on Berger 1978)
100743.899044297 = harmean(176420,75259,72576,308043,191404,68829,72732)
25685.3568935329 = 1/(-2/100743.899044297-1/2/11.85652502+3/2/29.42351935+1/2/11.8627021700857-3/2/29.4701958106261)
“typo exploration” above (i.e. change table 2 g_3 rate 17.269 to 17.369 (closer to estimate of other authors)) corresponds with libration state: 3rd panel top row figure 7 — a detail washed out by the tabulated long-run convergence —- study the figures in this paper very carefully, comparing each distribution mode with values tabulated by these authors & others
author comments on increasing skewness over time
growing skewness reflects variable wait-time until state-jump
see figure 9
compare with figure 7 (link in last comment)
mean converges but (decreasing number of) individual cases still locked in (or recently drifting from) less-dominant libration state, as modeled marginally (not jointly) and statistically computed (MH MCMC)
authors clearly state they ignored joint distributions
table 2 may be a useful indicator of extreme marginal averages
thus practical to consider combinatorically all possible crosses of marginal modes fully realizing observed state is (curiously) marginally disfavored by long-run MH MCMC configured to ignore joint distribution
~25685 & ~25770 are at the extremes (governed by assumptions)
precession rate’s variable including systematic variation and sampling (sampling bias correctable with sufficient attention & care)
fig. 13
g_4 estimate fine but g_3 way off (curious, arouses suspicion)
section 6.2 & fig. 12
highly curious errors — very suspicious —- scrutinize every detail (start with the location of the vertical lines)
La2021
225039.069282862 = 1 / g_1 = 360*60*60/5.759
174006.444683136 = 1 / g_2 = 360*60*60/7.448
75047.773466906 = 1 / g_3 = 360*60*60/17.269; [74615.6946283609 = 360*60*60/17.369]
72418.4175234689 = 1 / g_4 = 360*60*60/17.896
304407.281910738 = 1 / g_5 = 360*60*60/4.257454
45883.8536630787 = 1 / g_6 = 360*60*60/28.24523
419694.963368985 = 1 / g_7 = 360*60*60/3.087957
1925637.98273374 = 1 / g_8 = 360*60*60/0.6730237
229299.363057325 = 1 / s_1 = 360*60*60/-5.652
193173.349232374 = 1 / s_2 = 360*60*60/-6.709
69035.3166782081 = 1 / s_3 = 360*60*60/-18.773
73191.3932343141 = 1 / s_4 = 360*60*60/-17.707
49188.0368318198 = 1 / s_6 = 360*60*60/-26.34787
433078.799289029 = 1 / s_7 = 360*60*60/-2.992527
1873545.50850714 = 1 / s_8 = 360*60*60/-0.6917366
95024.7922322511 = beat(304407.281910738,72418.4175234689)
99600.0167844473 = beat(304407.281910738,75045.60062538)
124042.879019908 = beat(174006.444683136,72418.4175234689)
131955.403960698 = beat(174006.444683136,75045.60062538)
406200.0673239 = beat(304407.281910738,174006.444683136)
2068635.27533919 = beat(75045.60062538,72418.4175234689)
[—
2459203.03605313 = beat(74615.6946283609,72418.4175234689) —— [typo]
36750.3190131859 = axial(74615.6946283609,72418.4175234689) —– [exploration]
73500.6380263718 = harmean(74615.6946283609,72418.4175234689) — [aside]
—]
98772.9593780962 = beat(229299.363057325,69035.3166782081)
107507.258399005 = beat(229299.363057325,73191.3932343141)
107427.055702918 = beat(193173.349232374,69035.3166782081)
117839.607201309 = beat(193173.349232374,73191.3932343141)
171092.045144009 = beat(69035.3166782081,49188.0368318198)
1215759.84990619 = beat(73191.3932343141,69035.3166782081)
La(2004a,2010a)average (Table 1 in La2020)
231842.576028623 = 1 / g_1 = 360*60*60/5.59
173901.37537739 = 1 / g_2 = 360*60*60/7.4525
74619.9907876555 = 1 / g_3 = 360*60*60/17.368
72337.575351641 = 1 / g_4 = 360*60*60/17.916
304406.35241565 = 1 / g_5 = 360*60*60/4.257467
45884.3085224084 = 1 / g_6 = 360*60*60/28.24495
419696.118636694 = 1 / g_7 = 360*60*60/3.0879485
1925648.56913613 = 1 / g_8 = 360*60*60/0.67302
3702804.24565363 = 1 / g_9 = 360*60*60/-0.350005
231428.571428571 = 1 / s_1 = 360*60*60/-5.6
183699.503897945 = 1 / s_2 = 360*60*60/-7.055
68756.9632341238 = 1 / s_3 = 360*60*60/-18.849
73001.7461837436 = 1 / s_4 = 360*60*60/-17.753
49188.0779029847 = 1 / s_6 = 360*60*60/-26.347848
433078.965717205 = 1 / s_7 = 360*60*60/-2.99252585
1873541.71666151 = 1 / s_8 = 360*60*60/-0.691738
3702962.94179834 = 1 / s_9 = 360*60*60/-0.34999
94885.7391932208 = beat(304406.35241565,72337.575351641)
98851.8163220366 = beat(304406.35241565,74619.9907876555)
123859.129354423 = beat(173901.37537739,72337.575351641)
130704.452624679 = beat(173901.37537739,74619.9907876555)
405629.613215262 = beat(304406.35241565,173901.37537739)
2364963.50364963 = beat(74619.9907876555,72337.575351641) ———————- “2.4 Ma”
2364963.50364964 = 2 * beat(73001.7461837436,68756.9632341238) —————– “2.4 Ma”
97818.7032983621 = beat(231428.571428571,68756.9632341238)
106640.335719575 = beat(231428.571428571,73001.7461837436)
109886.382906563 = beat(183699.503897945,68756.9632341238)
121144.139091419 = beat(183699.503897945,73001.7461837436)
172826.54615749 = beat(68756.9632341238,49188.0779029847)
1182481.75182482 = beat(73001.7461837436,68756.9632341238) ——————– “1.2 Ma”
1182481.75182481 = beat(74619.9907876555,72337.575351641) / 2 —————– “1.2 Ma”
2021 – 2020 = 1 suggestion:
Srutinize curiously suspicious La2021 errors — e.g. incorrectly-placed lines on graphs and concomitant misleading claims in the text.
Period (a) – Frequency (”/a) Conversions
_____
Zeebe 2017
94869.298508883 = beat(304403.992953611,72327.8864184302) = 360*60*60 / 13.6609
98840.7565588774 = beat(304403.992953611,74613.546734218) = 360*60*60 / 13.112
123870.967741935 = beat(173822.073793908,72327.8864184302) = 360*60*60 / 10.4625
130729.5029051 = beat(173822.073793908,74613.546734218) = 360*60*60 / 9.9136
405202.60130065 = beat(304403.992953611,173822.073793908) = 360*60*60 / 3.1984
2361085.80797959 = beat(74613.546734218,72327.8864184302) = 360*60*60 / 0.5489
1179898.03350328 = beat(73017.3754310053,68762.0705023451) = 360*60*60 / 1.0984
97936.975742462 = beat(230826.773055961,68762.0705023451) = 360*60*60 / 13.233
106802.037149968 = beat(230826.773055961,73017.3754310053) = 360*60*60 / 12.1346
109973.100715334 = beat(183494.032196407,68762.0705023451) = 360*60*60 / 11.7847
121276.774936133 = beat(183494.032196407,73017.3754310053) = 360*60*60 / 10.6863
172795.392122877 = beat(68762.0705023451,49188.1675130371) = 360*60*60 / 7.5002
_____
La(2004a,2010a)average
94885.7391932208 = beat(304406.35241565,72337.575351641) = 360*60*60 / 13.658533
98851.8163220366 = beat(304406.35241565,74619.9907876555) = 360*60*60 / 13.110533
123859.129354423 = beat(173901.37537739,72337.575351641) = 360*60*60 / 10.4635
130704.452624679 = beat(173901.37537739,74619.9907876555) = 360*60*60 / 9.9155
405629.613215262 = beat(304406.35241565,173901.37537739) = 360*60*60 / 3.195033
2364963.50364963 = beat(74619.9907876555,72337.575351641) = 360*60*60 / 0.5480
1182481.75182482 = beat(73001.7461837436,68756.9632341238) = 360*60*60 / 1.096
97818.7032983621 = beat(231428.571428571,68756.9632341238) = 360*60*60 / 13.249
106640.335719575 = beat(231428.571428571,73001.7461837436) = 360*60*60 / 12.153
109886.382906563 = beat(183699.503897945,68756.9632341238) = 360*60*60 / 11.794
121144.139091419 = beat(183699.503897945,73001.7461837436) = 360*60*60 / 10.698
172826.54615749 = beat(68756.9632341238,49188.0779029847) = 360*60*60 / 7.498848
_____
La2021
95024.7922322511 = beat(304407.281910738,72418.4175234689) = 360*60*60 / 13.638546
99600.0167844473 = beat(304407.281910738,75045.60062538) = 360*60*60 / 13.012046
124042.879019908 = beat(174006.444683136,72418.4175234689) = 360*60*60 / 10.448
131955.403960698 = beat(174006.444683136,75045.60062538) = 360*60*60 / 9.8215
406200.0673239 = beat(304407.281910738,174006.444683136) = 360*60*60 / 3.190546
2068635.27533919 = beat(75045.60062538,72418.4175234689) = 360*60*60 / 0.6265
1215759.84990619 = beat(73191.3932343141,69035.3166782081) = 360*60*60 / 1.066
98772.9593780962 = beat(229299.363057325,69035.3166782081) = 360*60*60 / 13.121
107507.258399005 = beat(229299.363057325,73191.3932343141) = 360*60*60 / 12.055
107427.055702918 = beat(193173.349232374,69035.3166782081) = 360*60*60 / 12.064
117839.607201309 = beat(193173.349232374,73191.3932343141) = 360*60*60 / 10.998
171092.045144009 = beat(69035.3166782081,49188.0368318198) = 360*60*60 / 7.57487
_____
La2011 Table 5 (has only perihelia — no nodes)
94926.7650262257 = beat(304399.417131486,72361.0252351259) = 360*60*60 / 13.65263
98863.1425160258 = beat(304399.417131486,74626.0277273697) = 360*60*60 / 13.109031
123977.271216256 = beat(173804.240903943,72361.0252351259) = 360*60*60 / 10.453529
130777.916695678 = beat(173804.240903943,74626.0277273697) = 360*60*60 / 9.90993
405113.811661464 = beat(304399.417131486,173804.240903943) = 360*60*60 / 3.199101
2384110.34604552 = beat(74626.0277273697,72361.0252351259) = 360*60*60 / 0.543599
note 171 ≠ 173
2.4 Ma (an important one) : tediously scrutinize every detail of column 1 row 3 graph ( g_4 – g_3 ) ; then read the claims about fig. 13 (in section 6.2)
to ease comparisons
probably enough said (0.6265 ≠ 0.5480) on this
from Hinnov 2013
general (~25770) = planetary + lunisolar (~25720) precession
25685 ~= 360*60*60 / 50.4576
2310 = 11*7*5*3*2 = 11#
45884.4 ~= 1 / g_6 ~= harmean(2311/(Ja-Sa),2310.5/(Jy-Sy)) —– +1 & +1/2 from primorial 11#
19.8549641949401 = beat(29.4701958106261,11.8627021700857) — anomalistic Standish (1992)
19.8589101021728 = beat(29.4571726091513,11.8619993833167) — synodic Seidelmann (1992)
45884.8222545066 = 2311 * 19.8549641949401
45884.4170192096 = harmean(45884.8222545066,45884.0117910702) —————————–
45884.0117910702 = 2310.5 * 19.8589101021728
45884.3897482377 = 1 / g_6 = 360*60*60/28.2449 — La2011 Table 6 La2010a
45884.3085224084 = 1 / g_6 = 360*60*60/28.24495 — La(2004a,2010a)average
45884.2272968667 = 1 / g_6 = 360*60*60/28.245 — La2011 Table 6 La2004a
45883.9023975755 = 1 / g_6 = 360*60*60/28.2452 — Zeebe 2017 Table 4
45883.8536630787 = 1 / g_6 = 360*60*60/28.24523 — La2021 Table 2
with diversified perspective
36750 = 73500 / 2 review
8 / (g_2 + 5*(g_3 + g_4) + g_6 + s_2 + s_3 + s_4 + s_6)
harmonic mean
36746.6589355023 — Zeebe 2017 Table 4
36749.7014379182 — La2011 Table 6 La2010a
36750.0196670027 — La(2004a,2010a)average
36750.3190131859 = 1/(g_3+g_4) — La2021 Table 2 with exploratory adjustment
36750.3379015986 — La2011 Table 6 La2004a
36889.5636478399 — La2021 Table 2
37209.6176613942 — Berger 1988 Table 4 (based on Berger 1978)
supplementary
36746.6589355023 = harmean(173822.073793908,183494.032196407,74613.546734218/5,68762.0705023451/5,72327.8864184302,73017.3754310053,45883.9023975755,49188.1675130371)
36749.7014379182 = harmean(173889.708842077,183569.40509915,74619.9907876555/5,68760.6112054329/5,72337.575351641,73009.9712692243,45884.3897482377,49188.090971097)
36750.0196670027 = harmean(173901.37537739,183699.503897945,74619.9907876555/5,68756.9632341238/5,72337.575351641,73001.7461837436,45884.3085224084,49188.0779029847)
36750.3379015986 = harmean(173913.043478261,183829.787234043,74619.9907876555/5,68753.3156498674/5,72337.575351641,72993.5229512813,45884.2272968667,49188.0648348793)
36889.5636478399 = harmean(174006.444683136,193173.349232374,75047.773466906/5,69035.3166782081/5,72418.4175234689,73191.3932343141,45883.8536630787,49188.0368318198)
37209.6176613942 = harmean(176420,191404,75259/5,68829/5,72576,72732,49434,49339)
1536 obliquely bonds with 1470, 6000, etc.
Capitaine 2003 (Table 5) precession in obliquity alongside Standish long-duration model anomalistic orbital invariants (936 & 4270) to realign perspective
1535.88262671198 = 360*60*60/843.81448
1535.88333657714 = 360*60*60/843.81409
1535.88339118218 = 360*60*60/843.81406
1200.30319518678 = beat(4270.51884168654,936.955612197409)
1198.77624475105 = beat(4270,936)
1536.74746987137 = harmean(4270.51884168654,936.955612197409)
1535.42835190165 = harmean(4270,936)
883.178329571106 = harmean(936,836)
3001.42588931156 = harmean(64000.2,1536.74746987137)
2999.77634751171 = harmean(64000.2,1535.88262671198)
2999.77770147709 = harmean(64000.2,1535.88333657714)
2999.77780562832 = harmean(64000.2,1535.88339118218)
2998.90987783669 = harmean(64000.2,1535.42835190165)
65008.4580351334 = beat(1535.42835190165,1500); 8126.05725439168, 16252.1145087834, 32504.2290175667, 65008.4580351334, 130016.916070267, 260033.832140534, 520067.664281067, 1040135.32856213, 2080270.65712427, 4160541.31424854, 8321082.62849708 — compare “(factor* sun)”
2400.60639037357 = beat(1536.74746987137,936.955612197409)
2402.7198838921 = beat(1535.88262671198,936.955612197409)
2402.71814662908 = beat(1535.88333657714,936.955612197409)
2402.71801299356 = beat(1535.88339118218,936.955612197409)
2403.83248224843 = beat(1535.42835190165,936.955612197409)
2400.60639037357 = beat(4270.51884168654,1536.74746987137)
2398.49661175262 = beat(4270.51884168654,1535.88262671198)
2398.49834291632 = beat(4270.51884168654,1535.88333657714)
2398.49847608287 = beat(4270.51884168654,1535.88339118218)
2397.38894612274 = beat(4270.51884168654,1535.42835190165)
68756.9632341238 = 1 / s_3 — La(average(2004a,2010a))
34378.4816170619 = 68756.9632341238 / 2
1470.99283468751 = axial(34378.4816170619,1536.74746987137)
1470.20039920479 = axial(34378.4816170619,1535.88262671198)
1470.20104965322 = axial(34378.4816170619,1535.88333657714)
1470.20109968773 = axial(34378.4816170619,1535.88339118218)
1469.78414257271 = axial(34378.4816170619,1535.42835190165)
only one (“It looks like there aren’t many great matches for your search”) search result (from google) for
“1536 years” obliquity
weatheringssteadysstudiesof(oblique’solution’symmetry)
130704.452624679 = beat(173901.37537739,74619.9907876555)
433078.965717205 = 1 / s_7
100402.649875387 = axial(433078.965717205,130704.452624679)
50201.3249376937 = 100402.649875387 / 2
100731.284587288 = beat(100076.152524661,50201.3249376937)
25722.6032216452 = 1/(-2/100731.284587288-1/2/11.85652502+100011.248558045/2368273.46147211)
68760.5409705648 = axial(1184000,73000)
41096.3025926102 = beat(68760.5409705648,25722.6032216452)
20548.1512963051 = 41096.3025926102 / 2
11423.0240729734 = axial(25722.6032216452,20548.1512963051)
1535.88296112698 = 3 * beat(11423.0240729734,490)
843.814296272316 = 360*60*60 / 1535.88296112698
843.81448 — L77
843.81448 — IAU2000
843.81409 — W94
843.81406 — P03
843.8142775 = average
1535.88299529573 = 360*60*60/843.8142775
Slower methods do no better than symplectic integrators.
Results of both depend on underlying ephemerides.
Therefore problem reduces to comparative ephemerides, with combinatoric attention to assumptions.
Conjecture: All “orbital solutions” map exactly to other orbital solutions with sufficient comparative attention to underlying epheride assumptions (parameters in the translation).
Slight change in assumptions (doesn’t necessarily but) can lead to different convergence either side of a symmetry point in a landscape of nonlinear assumptions.
Recommending: tree level attention in the forest of matrices & computing for generators of “120000 solutions”.
1353.85090672047 = axial(11423.0240729734,1535.88296112698) — “1350”
980 = harmean(1353.85090672047,767.941480563488) ————— 1536, 768
UK SST ink sh!…
25722.6032216452 = 1/(-2/100731.284587288-1/2/11.85652502+100011.248558045/2368273.46147211)
25770.753387539 = 1/(-2/100731.284587288-1/2/11.85652502+100011.248558045/2368273.46147211+3/2/29.42351935+1/2/11.8627021700857-3/2/29.4701958106261-1/23.68)
13767156.3909689 = beat(25770.753387539,25722.6032216452)
27534312.7819379 = 2 * 13767156.3909689
27.5 million ~= 2 * beat(25770.753387539,25722.6032216452)
25770.0359146014 = 360*60*60/50.290966
25720.5198783896 = 360*60*60/50.387784 — IAU1976 (L77)
25722.0354624594 = 360*60*60/50.38481507 — P03
25722.0495372735 = 360*60*60/50.3847875 — P03pre1
25722.0495372735 = 360*60*60/50.3847875 — B03
25722.0495372735 = 360*60*60/50.3847875 — MHB
25722.0495372735 = 360*60*60/50.3847875 — IAU2000
25722.0526360831 = 360*60*60/50.38478143 — F03
25722.1631216381 = 360*60*60/50.38456501 — W94
23739.3950755189 = axial(49188.0779029847,45884.3085224084)
25747.3224920285 = beat(304406.35241565,23739.3950755189) ———————
25746.6557925767 = harmean(25770.753387539,25722.6032216452) —————
27534312.7819354 = beat(25746.6557925767,25722.6032216452)
27534312.7819403 = beat(25770.753387539,25746.6557925767)
27.5 = average( -(27^2) , 28^2 ) = average( 1^2 + 3^2 + 5^2 , 2^2 + 4^2 )
55 = 28^2 – 27^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2
007won weather heuristic or mnemonic with SSTand!sh anomalistic
memorable precession
constantly rating obliquity
1473.04563141139 = beat(4627,1800) / 2
1504.22242843624 = beat(71071.71,1473.04563141139)
1536.74746553612 = beat(71071.71,1504.22242843624)
1536.74746987137 = harmean(4270.51884168654,936.955612197409)
review (table 2a)
936.955612197409 = 1/(-2/11.8627021700857+5/29.4701958106261)
4270.51884168654 = 2/(1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
quote from above:
“architecturally different group of orbital solutions”
_____
map from La2021 to La2010a “405ka”
La2021
100732.896221555 = harmean(174006.444683136,75045.60062538,72418.4175234689,304407.281910738,193173.349232374,69035.3166782081,73191.3932343141)
433078.958481195 = 1 / s_7 = 360*60*60/2.9925259 — La2004
130711.04387292 = beat(173889.708842077,74619.9907876555) = 360*60*60 / 9.915 — La2010a
405568.069599057 =2/(3/2/100732.896221555-1/433078.958481195-1/130711.04387292)
405568.048748278 = beat(304405.279928371,173889.708842077) = 360*60*60 / 3.195518 — La2010a
_____
map to La2021 “406ka” (curious outlier attracting inquiry) from Berger
Berger 1988 Table 4 (based on Berger 1978)
100743.899044297 = harmean(176420,75259,72576,308043,191404,68829,72732)
432023 = 1 / s_7 = 360*60*60/2.99984028628105 — Berger
130704.452624679 = beat(173901.37537739,74619.9907876555) = 360*60*60 / 9.9155 — La(2004a,2010a)avg
406200.879541285 =2/(3/2/100743.899044297-1/432023-1/130704)
406200.0673239 = beat(304407.281910738,174006.444683136) = 360*60*60 / 3.190546 — La2021
_____
the critical diagnostic:
Berger is the s_7 outlier
432023 — Berger 1988 Table 4 (based on Berger 1978)
433068.234979616 — Zeebe2017
433078.799289029 — La2021
433078.958481195 — La2011 Table 6 La2004a
433078.965717205 — La(2004a,2010a)average
433078.972953216 — La2011 Table 6 La2010a
= 1/s_7
The 2 architecturally different groups of “orbital solutions” estimate different (and systematically related) physical quantities. To underscore the point: These are NOT just different measurements of the same phenomena. They characterize different — but related — physical phenomena. Transformation to a common framework with phenomenological accord is both feasible and prerequisite to meaningful comparison.
5 Times the Symmetry
19.8549641949401 = beat(29.4701958106261,11.8627021700857) —— Standish (1992)
16.9161211952138 = harmean(29.4701958106261,11.8627021700857) — long-model anomalistic
Horizons insight: La2021 mirrors La(2004a,2010a)average
100750 = beat(19.858877815863,19.8549641949401)
100071 = beat(16.9161211952138,16.9132621572062)
symmetry date = 1929+(9+20/30)/12
“Dewey first became interested in cycles while Chief Economic Analyst of the Department of Commerce in 1930 or 1931 because President Hoover wanted to know the cause of the Great Depression. Dewey reported that each economist to whom he spoke gave him a different answer and he lost faith in the current economic methods. He received and took advice to study how business behaviour occurred rather than why. Therefore, his views are generally regarded as inconsistent with mainstream economics.”
“When transforming between the underlying ICRF reference frame, Horizons uses the IAU76/80 fixed obliquity of 84381.448 arcsec at the J2000.0 standard epoch, and an associated time-varying model for “of-date” ecliptic.”
1535.88262671198 = 360*60*60 / 843.81448
“When transforming between FK4/B1950, a fixed obliquity of 84404.8362512 arcseconds is used at the standard epoch, with an associated time-varying model for other instants.”
1535.45703962144 = 360*60*60 / 844.048362512
counter-mythology (what truly accounts for coincidence of dates?)
relationship parameter uncertainty minimized at multivariate sample center
different bias with different framing:
2166101.14285714 — B
2159260.67718384 — Seid trop
2384728.28959929 — seid synodic
2384110.34604552 — T5
2604030.68238338 = beat(2166101.14285714,1182481.75182481)
2607198.33309978 — W
shift ~early 1930s (sample center) “95ka” & “131ka” (previously noted with entertainment links from way back in the old days before entertainment was abandoned) by “2.4Ma”: gives “405ka” in tight accord with convention
mystery vanishing
the view has become orders of magnitude more clear than I ever imagined it would
the authors just don’t have the presentation organized as a botanist would design a taxonomic key (comparing & contrasting reference frames, parameter values, etc. to simply ID reliably different species & varieties)
supplementary
25747.7997010794 = harmean(25773.0455911473,25722.6032216452) — La(2004a,2010a)avg
25747.3224920285 (SSTartin’ too˚C weather peace’s_f(IT) buck$in˚K sh!yen/ruble/yuan?)
25747.3026929123 = harmean(25808.1036291693,25686.7875634114) — La2021 with below
25747.43606059 = harmean(25808.3716271706,25686.7875634114)
25746.5839635401 = harmean(25808.1036291693,25685.3568935329) — Berger with below
25746.717323772 = harmean(25808.3716271706,25685.3568935329)
5.99685290323073 = beat(0.0754402464065708,0.0745030006844627)
179.333323110834 = slip(18.6129709123853,8.84735293159855)
1986.46983643213 = slip(5.99685290323073,0.999978614647502)
25808.3716271706 = slip(1986.46983643213,179.333323110834)
25808.1036291684 = beat(4231.48507417337,3635.42278750964)
4231.48507417337 = slip(164.793624044745,84.0331316671926) —- Standish anomalistic
3635.42278750964 = slip(163.7232045,83.74740682) ——————— Seidelmann tropical
keplerian models with hindsight:
long-duration models good for anomalistic estimates but sidereal biases to 4270 = s(4370)
Confirmation: Mapping from any parameter list to any other is feasible with a little diagnostic work.
With the forest in focus the list of noteworthy trees is long —
too long to report; some selective highlights maybe.
–
Meanwhile almost nothing of interest comes up in “climate discussion” anymore.
Found an exception and scrolled through it in under a minute:
2022 Climate effects on archaic human habitats and species successions
Another paper on human civilisation collapse, this time blaming volcanoes.
“https://eos.org/articles/did-volcanoes-accelerate-the-fall-of-chinese-dynasties” Ming dynasty collapse in 1644ce.
Or “One Drought and One Volcanic Eruption Influenced the History of China: The Late Ming Dynasty Mega-drought” link https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2020GL088124
1644ce is a precise Eddy cycle root. The one single common element in multi civilisations collapse in the past 8k2 years.
Seidelmann (1992) short-model sidereal
Standish (1992) long-model anomalistic
171.406220601552 = beat(164.791315640078,84.016845922161)
171.471519050756 = beat(164.793624044745,84.0331316671926)
111.292543528394 = harmean(164.791315640078,84.016845922161)
111.307357343015 = harmean(164.793624044745,84.0331316671926)
450106.937906397 = beat(171.471519050756,171.406220601552)
836224.782693008 = beat(111.307357343015,111.292543528394)
585215.415762275 = harmean(836224.782693008,450106.937906397)
84.020635232164 = 7/(2/585215.415762189-6/836224.782693201+7/84.016845922161)
84.0206328002627
164.770100737597 = 7/(6/585215.415762189-4/836224.782693201+7/164.791315640078)
164.770073467735
last comment underscores sample center — background:
171.444974999322 = beat(164.770073482697,84.0206327956442)
111.291020849569 = harmean(164.770073482697,84.0206327956442)
758281.302167317 = beat(171.444974999322,171.406220601552)
8134256.92902343 = beat(111.292543528394,111.291020849569)
836235.807754755 = beat(8134256.92902343,758281.302167317)
4232.12253521941 = slip(164.770073482697,84.0206327956442)
4270.09258127429 = slip(164.791315640078,84.016845922161)
475942.4050886 = beat(4270.09258127429,4232.12253521941)
584818.172857209 = harmean(758281.302167317,475942.4050886)
15268.3462104784 = 3 * beat(791.282376817764,936.955612197409) — stand a short
15351.8779640976 = beat(883.060665385146,936.955612197409) — standish s
15379.8163558059 = beat(883.152947004212,936.955612197409) — seid synodic
15391.7026544853 = beat(883.192112166333,936.955612197409) — W’factsheet’s
15403.482415902 = beat(883.230870074916,936.955612197409) — 1930.13888888889
15403.6217843793 = beat(883.231328292231,936.955612197409) — 1929.22222222222
15407.6872446168 = beat(883.244691321446,936.955612197409) — 25771.4533429313
15415.6993862807 = beat(883.271007507227,936.955612197409) — 25763.987503107
15439.8479288541 = 2 * beat(835.546575435627,936.955612197409) — seid s short
15461.1213414356 = beat(883.419711511583,936.955612197409) — 25721.8900031954
15559.2279828429 = 5/3 * beat(851.49574667679,936.955612197409) — stand n
15811.8617894692 = 2 * beat(837.679677971629,936.955612197409) — stand s short
16546.1976870195 = 3 * beat(800.898956785007,936.955612197409) — Seid trop
16858.3647714886 = 3 * beat(803.058289202714,936.955612197409) — stand n short
15439.8479288541 = beat(835.546575435627,936.955612197409) * 2 — seid s short
15438.6351720889 = beat(171.444289533663,171.406220601552) / 50
171.444289533663 = beat(163.7232045,83.74740682) — Seid trop
171.406220601552 = beat(164.791315640078,84.016845922161) — seid s short
seid synodic with
seid s short
1616553.04803317 = beat(84.021212742844,84.016845922161)
1.61803398874989
1308174.32487133 = beat(164.791315640078,164.770559417647)
1.30901699437495 = 2.61803398874989 / 2
6857584.63018089 = beat(1616553.04803317,1308174.32487133)
6.85410196624968 = beat(1.61803398874989,1.30901699437495)
723053.099519965 = axial(1616553.04803317,1308174.32487133)
0.723606797749979 = axial(1.61803398874989,1.30901699437495)
anomalistic invariant heuristic mnemonics
as vaguely alluded:
1184000 = axial(2618033.98874989,2161561.20914683)
2368000 = harmean(2618033.98874989,2161561.20914683)
2161561.20914683 = beat(2618033.98874989,1184000)
2618033.9887499 = beat(2161561.20914683,1184000)
futher detail braids around that (a focus of well-paid technicians at well-resourced organizations)
171.404107320277 = beat(164.786005834669,84.01495797691) — Seidelmann short sidereal
171.471690382177 = beat(164.793490144188,84.0331379977269) — Standish anomalistic
434886.363446196 = beat(171.471690382177,171.404107320277) ; * 6 = 2609318.18067717
comparative review
with 1-size-fits-all anomalistic simplification (around which to braid deeper detail) :
171.471519050756 = beat(164.793624044745,84.0331316671926) — Standish anomalistic approximation
435991.22059021 = beat(171.471519050756,171.404107320277) ; * 6 = 2615947.32354126
~2.215ka sidereal at sample-center (memorably~2.4ka tie’s not exact) :
2215490.46879297 = beat(2618033.98874989,1200000)
1200000 = axial(2618033.9887499,2215490.46879297)
2400000 = harmean(2618033.9887499,2215490.46879297)
31 Ma U-N :
31121347.9728875 = beat(2384728.28959929,2215000)
they say “sidereal”, “synodic”, “anomalistic” but each can mean 10 different things — not just different estimates of the same thing but for example some of these “sidereal” reference frames are spinning fast relative to other “sidereal” frames
by comparing & contrasting their parameter lists we learn how they think — and realize it’s the only way to safeguard against perennial cross-disciplinary communication failure
suggestion: a well-resourced organization could create a clear, concise outline of the various relationships betweeen the varying reference frames and definitions — then a meaningful climate discourse could begin
political disclaimer: there is NO party I would vote for (in ANY country)
the short-duration models have systematic biases
longitutude rates vary anomalistically at sidereal & synodic spatiotemporal sampling-points
sampling’s inadequate to separate all the sources of variation
e.g.
19.8650360864628 = beat(29.4474984673838,11.8626151546089)
61.0464822565173 = slip(29.4474984673838,11.8626151546089)
835.546575435631 = slip(61.0464822565173,19.8650360864628)
vs.
19.8588720868409 = beat(29.4571508661187,11.8619822942945)
60.9469473168439 = slip(29.4571508661187,11.8619822942945)
883.244691321452 = slip(60.9469473168439,19.8588720868409) ; / 2 = 441.622345660726
no coincidence:
936.718309415801 = beat(835.546575435631,441.622345660726)
recall:
23094.6280196825 = beat(11.8626151546089,11.85652502)
36133.4834429326 = beat(29.4474984673838,29.42351935)
64000.2003306117 = beat(36133.4834429326,23094.6280196825)
with 25771.4533429313 :
222346.270902445 = beat(25771.4533429313,23094.6280196825)
89867.7550325788 = beat(36133.4834429326,25771.4533429313)
11.8619822942945 = axial(222346.270902445,11.8626151546089)
29.4571508661187 = beat(89867.7550325788,29.4474984673838)
that’s how to simply translate the “decoy” model to sample-center sidereal
(importantly means neat mathematical properties listed in the past survive unbiasing)
explore tropical, anomalistic, sidereal combos for deeper insight
(multivariate optimization problem)
easy to figure out which combinations different authors used to arrive at orbital invariants for familiar parameter lists (mystery vanished)
question: who’s adjustin’ the decimal to point for initial conditions of alternative stable attractor?
25763.987503107 = beat(1.00001743371442,0.99997862) — Seidelmann (1992) sidereal & tropical
26089.1428478524 = beat(1.00001642710472,0.999978097193703) — “factsheet” s & t
2067197.606194 = beat(26089.1428478524,25763.987503107)
2068635.27533919 = beat(75045.60062538,72418.4175234689) —- La2021
26088.914020021 = beat(2068635.27533919,25763.987503107)
1.00001642744093 = beat(26088.914020021,0.999978097193703) = 365.2560001228 days
fascinating too,
point for comparison:
2364963.50364963 = beat(74619.9907876555,72337.575351641) — La(2004a,2010a)avg
/ 2 =
1182481.75182481 = beat(73001.7461837436,68756.9632341238) — La(2004a,2010a)avg
25763.987503107 = beat(1.00001743371442,0.99997862) — Seidelmann (1992) sidereal & tropical
That period (25764) was discussed here:
584 “factsheet” orbital invariants
semimajor axis
584.055281799632 = 1/(3/11.8729429230374-8/29.663446337819-2/84.1382639508332+7/164.708162250495)
average(perihelion,aphelion)
584.005037310293 = 1/(3/11.8729429230374-8/29.6634618572725-2/84.1382859193323+7/164.708162250495)
584 = 2*292 = 2*(19+43+67+163)
i.e. twice the sum of the 4 Heegner numbers satisfying 19 = x mod 24
the fascination never ends
oldbrew’s piece ‘Why Phi? – some Moon-Earth interactions’ from 2015 has something that is now more meaningful.
Quote ” ‘The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years.’ ” The 980 year beat cycle had the profoundest effect on human civilisations.
The latest new piece is that of the collapse of the Ming dynasty in 1644ce. Working/trawling the numbers and looking for interesting signs I looked at the time period between 1644ce and the latest addition of ‘dates of interest’ ie year 173ce. 1644 minus 173 = 1471
Looks like a very damned number that (still not sure why). 🙂 ?
precession (IAU conventional perspective)
25722.3473735492 — primary (with oblateness J2 focus)
25771.5954940753 — secondary
review
back in 2015 model variation was largely ignored
“expert” shepherds around “climate discussions” didn’t even raise the issue
it should have been raised right at the beginning (they caused a 14 year delay)
countless narratives have many models (that are strictly inconsistent with one another) woven together
a lot of commentators appear to place religious faith in an “official orrery” (that they never ID)
it’s fascinating
it’s profound
What’s “the cause” of knew initial conditions?
another example:
“2.4 Ma” bias in Berger model’s tropical
2166101.14285714 = beat(75259,72732)
anomalistic anchor:
171.471519050756 = beat(164.793624044745,84.0331316671926)
relative motion in rotating reference frame using 2 different sets of tropical estimates
171.444289533663 = beat(163.7232045,83.74740682) — Seidelmann (1992)
1079630.33859387 = beat(171.471519050756,171.444289533663)
* 2 =
2159260.67718775
171.444286952825 = beat(163.723203285421,83.7474058863792) — “factsheet”
1079528.00372651 = beat(171.471519050756,171.444286952825)
* 2 =
2159056.00745301
Conventional “orbital solutions” narratives (see La2021) vary “initial conditions” suspiciously enough to attract common sense.
wonder weather
in knew perspective
IF
well-rounded initial condition?sh!NYdoor$Found?IT
THEN
state mean T :
“Sidereal orbit period (days) 365.256”
26089.1428478524 = beat(1.00001642710472,0.999978097193703)
2068635.27533919 = beat(75045.60062538,72418.4175234689) = 360*60*60 / 0.6265
25764.210666499 = axial(2068635.27533919,26089.1428478524)
1.00001743337821 = beat(25764.210666499,0.99997862)
1.00001743371442 — Seidelmann (1992)
1.00001743390371 = (1-(1/240)^1)^(0/1)/(1-(1/240)^2)^(2/2)/(1-(1/240)^3)^(3/3)/(1-(1/240)^4)^(2/4)/(1-(1/240)^5)^(5/5)/(1-(1/240)^6)^(1/6)
a few lines of calculations
…’n’ so according “too recent” literature expositions:
algorithms converge after months of calculation (please forgive the thick sarcasm)
quick anecdote
The last time I programmed was 1992. Exception: I wrote comprehensively a concise script (fits on a single page) to implement MH MCMC ~2007.
L AND R “backin’ the [365.256000] daze”
balance ‘sing central’ limits
What ABout$&$ SK[?]IT
$0$aid sci. CO-SSTar JSUN :
“she11aid D-own ‘on the side’ www ok??” __ “dull love” mud
D-bait$moat11
found moon keyet have U-N “a bun” N/A?? na….
171.448915009823 = beat(164.786468404101,84.0258420435284)
1300590.72107827 = beat(171.471519050756,171.448915009823) ; * 2 = 2601181.44215653
know “we’re gonna win again” doubt
be “cause” invariant “factsheet” Rink comparable
$sum won must be plannin’ a run 4 fed-ural can aid 1/(U-N) leader sh!…
IF memoryless relay channel’s receivin’direct sh!endureSST(means$buy poll lure)
TH”EN$0longJSUN”(w)in(k?)can0we dough
“maybe” prime money stir JSUN “um….the won”
“factsheet” review:
2607198.33309978 =
1/(3/11.8619822039699-8/29.4571389459274-2/84.0120465434634+7/164.788501026694)
——————-
1/s_3 & 1/s_6
172826.54615749 = beat(68756.9632341238,49188.0779029847) = 360*60*60 / 7.498848
173901.37537739 = 1 / g_2 = 360*60*60/7.4525
173362.29482452 = harmean(173901.37537739,172826.54615749) = 360*60*60 / 7.475674
* 2 =
346724.58964904 = harmean(347802.75075478,345653.09231498)
La(2004a,2010a)average thus amicably links to La2021:
406200.869057407 = beat(2368000,346724.58964904) = 360*60*60 / 3.1905397027027
contrasting Standish (1992) anomalistic with Williams’ “factsheet” sidereal
406218.42152228 = 16/(7/11.8627021700857-5/29.4701958106261-7/11.8619822039699+5/29.4571389459274)
U-N link
2068 gaffe from
2368 to point for amicable correct sh!U-N (ABnormal interrePRet ace shown fact365.256sh!..)
sampling (not just forecasting) assumptions
Diagnostics on Zebe’s 405200 vs. La2021’s 406200 (check the harmonic mean) demand tedious care and (again) point directly to assumptions about lengths of different types of years. The “user-defined matrix” impression: computer algorithm “miss tree diagnostics” of forest.
There will be a delay. This is incredibly tedious.
introducing a feature of the tedium
compare & contrast tropical
Seidelmann (1992) vs.
Williams’ “factsheet”
obviously & easily noticing Jupiter and why:
25771.8797028462 = beat(11.8619822039699,11.85652502)
25780.5804579468 = beat(29.4571389459274,29.42351935)
26586.2998478743 = beat(84.0120465434634,83.74740682)
25326.0015186278 = beat(164.788501026694,163.7232045)
25762.0064305964 = beat(11.8619822039699,11.8565229295003)
25779.6502299353 = beat(29.4571389459274,29.4235181382615)
26586.2057581826 = beat(84.0120465434634,83.7474058863792)
25325.9724557857 = beat(164.788501026694,163.723203285421)
reorganized
25771.8797028462 = beat(11.8619822039699,11.85652502)
25762.0064305964 = beat(11.8619822039699,11.8565229295003)
25780.5804579468 = beat(29.4571389459274,29.42351935)
25779.6502299353 = beat(29.4571389459274,29.4235181382615)
26586.2998478743 = beat(84.0120465434634,83.74740682)
26586.2057581826 = beat(84.0120465434634,83.7474058863792)
25326.0015186278 = beat(164.788501026694,163.7232045)
25325.9724557857 = beat(164.788501026694,163.723203285421)
(to be continued)
1 kilo “what cause?”
1000 = 406200 – 405200
no. Rand(um..Late)Rally
25766.9421209213 = harmean(25771.8797028462,25762.0064305964)
^ mid-point balance offset v
147199926.13415 = beat(25771.4533429313,25766.9421209213)
carries secret? sauce trail yack$queue dr!11ate..or we11…
press ice lunisolar integration
25717.3961148396 = axial(147199926.13415,25721.8900031954) _____.4 est miss tree
D!ag.nos?SST!ca11y inferred
11.8619937706192 = beat(25717.3961148396,11.85652502) — Seidelmann
29.4572216395723 = beat(25717.3961148396,29.42351935) ——— tropical
405200.669414423 = 16/(7/11.8627021700857-5/29.4701958106261-7/11.8619937706192+5/29.4572216395723)
Z-weather m?-?th
11.8619916781907 = beat(25717.3961148396,11.8565229295003) — “factsheet”
29.4572204250563 = beat(25717.3961148396,29.4235181382615) ——- tropical (Williams)
406199.514159266 = 16/(7/11.8627021700857-5/29.4701958106261-7/11.8619916781907+5/29.4572204250563)
From dust or sh! ?-? camp aim
406200 = ha!LL(R of mi?roar)SSTat˚Know doubt———-herdwh@?$uplementtory
g_0 tide 1/J P11an$D-own(mach-zoom MET R 0˚C)too write $64k “Bon” us+in site
25780.1153355497 = harmean(25780.5804579468,25779.6502299353)
25775.7836115215 = harmean(25780.1153355497,25771.4533429313)
36750 ~= harmean(64000,25775.7836115215)
can eveRBeat22shore what(SST Rate)up back word AS AN inUK$peeryen$R00˚Key but “mite guess” a11$we11
64000.193822779 = ( 7920 / (490/((245/(φ^22+1/11)^(e/11+1/22)+((245/(φ^22+1/11)^(e/11+1/22))^2+980)^(1/2))/2)) )^2 / 2
36750.4810025714 = harmean(64000.1978119299,25775.7836115215)
Ready2remember
Weather General PR$USh!’n’buyUSmnemonicD-vice?
25717: 490 = 2*5*7*1*7; 22 = 2+5+7+1+7
25772: 980 = 2*5*7*7*2; 23 = 2+5+7+7+2
Tracking (weather PC or KC) the Diversity and Evolution of 405k Species
carefully note spacing:
67245722.9815917 = beat(25771.8797028462,25762.0064305964) — from tropical
88935125.5164591 = beat(25771.4533429313,25763.987503107) — common analogous estimates
how far would such general differences offset from lunisolar?
25731.7325443229 = beat(67245722.9815917,25721.8900031954)
11.8619907223014 = beat(25731.7325443229,11.85652502)
29.4572028408528 = beat(25731.7325443229,29.42351935)
405645.784261723 = 16/(7/11.8627021700857-5/29.4701958106261-7/11.8619907223014+5/29.4572028408528)
25729.3314615603 = beat(88935125.5164591,25721.8900031954)
11.8619912326005 = beat(25729.3314615603,11.85652502)
29.4572059878232 = beat(25729.3314615603,29.42351935)
405571.202304555 = 16/(7/11.8627021700857-5/29.4701958106261-7/11.8619912326005+5/29.4572059878232)
are the preceding consistent with the following?
405691.196375825 = beat(304407.424910486,173913.043478261) = 360*60*60 / 3.194548 — La2004a
405629.613215262 = beat(304406.35241565,173901.37537739) = 360*60*60 / 3.195033 —– avg
405568.048748278 = beat(304405.279928371,173889.708842077) = 360*60*60 / 3.195518 — La2010a
“[…] results are therefore consistent with […] including any of their deficiencies […]”
“[…] modern solutions are derived from different measurement datasets and dynamical models (planetary ephemerides), introducing inconsistencies.”
“The ecliptic concept, being based on adopted definitions of a “mean orbit plane”, is ambiguous at high-precision levels due to the mutual motion of the Earth and Moon. Consistent usage is most important.”
we’re used to thinking
1/(g_2 – g_5) ≠ f(k) in fore/hindcasting
but sampling‘s immersed in real context
divergent integration (from inconsistently tabulated initial conditions with typos) deepens questions
preceding diagnostically explores (only crudely) the scale of estimate deviation
suggestion: with nuanced comparative fine-tuning, well-paid technicians can (try to) differentiate origins — and reliably key (like field botanist) sampling & estimation species
___
supplementary typo motivation
“Sidereal orbit period data were corrected. Previous values were taken from p.704 in reference [B] where they were incorrectly labeled as Sidereal instead of Tropical. The corrected values are derived from the mean longitude rates shown in Table 5.8.1 in reference [B].”
error propagated into several books
m(nd pn)ddlesp(un)0doub__t inequality
“[B] Explanatory Supplement to the Astronomical Almanac. 1992. K. P. Seidelmann, Ed., p.706 (Table 15.8) and p.316 (Table 5.8.1) […]”
Sci. DO 11 moon˚Key T˚able 15.6 with mnemonic PR$USyen
29.5351971029 = 9.5549095957^(3/2)
25764.3755169902 = 29.5351971029^3
fi(u)11&inMEMorrery:JSUN$ABba˚CkCO$US$capeAlCO˚Tru$wantieGoreyear11OX
25772.0234386821 = beat(64000.1978119299,18373.3294677512) —— 1/2*zz$leap year:
36746.6589355023 — Zeebe 2017 Table 4
36746.5128273529 = harmean(64000.1978119299,25771.8797028462)
36746.0794277529 = harmean(64000.1978119299,25771.4533429313)
zz 3-4 month in DO grace yuan
out(nd)T -in like 365.256- what$in(nd)Tin'(zz)est!mate$
365.242 = 0.999978097193703 * 365.25
$2.068k g_1USyear herdBroad ca SST wa$n’t $0 bri11yenT
laughed?prof0(un)doubt[write2021]liar
in conventional-speak:
This is a profound outlier:
2067197.6 = 1/(1/365.242190955-1/365.256367664193-1/365.242+1/365.256)/365.25
I have no orientation on the media-defined political spectrum. The symbolism is my way of painting a picture of how persistently-ridiculous the media-spin and propaganda of recent years looks to me.
keywords:
“2.4 million year cycle”
wrote above:
“the short-duration models have systematic biases
longitutude rates vary anomalistically at sidereal & synodic spatiotemporal sampling-points
sampling’s inadequate to separate all the sources of variation”
clarification:
sampling may well be adequate with statistical models adjusted hierarchically to remove the well-defined systematic bias
it’s tedious but feasible work for a team of careful, well-paid technicians
Zeebe 2017 Table 4:
173822.073793908 = 1 / g_2 = 360*60*60/7.4559
72327.8864184302 = 1 / g_4 = 360*60*60/17.9184
123870.967741935 = beat(173822.073793908,72327.8864184302)
123870.967741935 = 1/(1/72327.8864184302-1/173822.073793908)
equal:
123870.967741935 = axial(3840000,128000)
123870.967741935 = 2^10 * 5^3 * axial(30,1)
123870.967741935 = 1/(1/128000+1/3840000)
123870.967741935 = 2^10 * 5^3 / (1/30+1)
41k, 406200, 25685, 1/s_3
La2021 Table 2
174006.444683136 = 1 / g_2 = 360*60*60/7.448
304407.281910738 = 1 / g_5 = 360*60*60/4.257454
406200.0673239 = beat(304407.281910738,174006.444683136) = 360*60*60 / 3.190546
25684.9315068493 = 360*60*60/50.4576 — Hinnov 2013 citing k from La
remember: model-obliquity (not to be confused with real obliquity) is a function of k
note indirect intermodel-confounding &
relation-structure shuffling (different perspective of trees in same forest)
interpret carefully, mindful of sampling bias structure
note well:
68762.1800165153 = beat( 406200 / 4 , 41000 )
25685.0709438618 = axial(68762.1800165153,41000)
40999.6836444163 = beat(68762.0705023451,25684.9315068493)
406200… = 4 * beat(68762.0705023451,41000)
68762.0705023451 = 1 / s_3 = 360*60*60/-18.8476 — Zeebe 2017
adjust reference frames, year-lengths, whatever else, recognize equivalence
—
first, quick review of 64000
19.8588720868409 = beat(29.42351935,11.85652502) — Seidelmann (1992) tropical
19.8650360864628 = beat(29.4474984673838,11.8626151546089) — Seidelmann (1992) sidereal
64000.2003306175 = beat(19.8650360864628,19.8588720868409)
64000.193822779 = ( 7920 / (490/((245/(φ^22+1/11)^(e/11+1/22)+((245/(φ^22+1/11)^(e/11+1/22))^2+980)^(1/2))/2)) )^2 / 2
64000.1978119299 = (7920/(2/(1/(9 + (2/(2/29.4474984673838+1/11.8626151546089)))+1/((245/(9 + (2/(2/29.4474984673838+1/11.8626151546089)))+((245/(9 + (2/(2/29.4474984673838+1/11.8626151546089))))^2+980)^(1/2))/2))))^2/2
64000.2766936711 = ( 7920 / harmean(JEV sidereal & tropical periods) )^2 / 2
64000.26272578 = (378-200) * beat( 47*71 , 163+67+43+19 )
64000 = (378-178)*(163+67+43+19+28) — “744 levels”
64000.0824330148 = 1/(1/36746.6589355023+1/36750.3379015986-1/25773.8517155112) — avg(Z17,La10a)
—
explore combination of year-lengths:
113224.424017561 = beat(1.0000262476142,1.0000174152119) ; * 2 = 226448.848035122 — Standish (1992)
20994.7173791339 = beat(1.0000262476142,0.999978616353183)
25773.8517155112 = beat(1.0000174152119,0.999978616353183)
23140.1021247331 = harmean(25773.8517155112,20994.7173791339)
36244.9244294912 = beat(64000.2003306175,23140.1021247331)
89214.4800444743 = beat(36244.9244294912,25773.8517155112)
64000.2003306175 = axial(226448.848035122,89214.4800444743)
128000.400661235 = harmean(226448.848035122,89214.4800444743)
11.8619937592335 = axial(226448.848035122,11.8626151546089)
29.4572215693577 = beat(89214.4800444743,29.4474984673838)
405202.330118954 = 16/(-7/11.8619937592335+5/29.4572215693577+7/11.8627021700857-5/29.4701958106261)
405202.60130065 = beat(304403.992953611,173822.073793908) — Zeebe 2017
—
explore Williams’ “factsheet” tropical offset (from Seidelmann tropical)
67245722.9816142 = beat(11.85652502,11.8565229295003) —— alternate tropicals define offset
23132.142062651 = axial(67245722.9816142,23140.1021247331)
225688.844623554 = beat(25773.8517155112,23132.142062651)
11.861991666805 = axial(225688.844623554,11.8626151546089)
714463914.954807 = beat(29.42351935,29.4235181382615) —— alternate tropicals define offset
36243.0858091232 = axial(714463914.954807,36244.9244294912)
89225.6215692853 = beat(36243.0858091232,25773.8517155112)
29.4572203548417 = beat(89225.6215692853,29.4474984673838)
406201.183093728 = 16/(-7/11.861991666805+5/29.4572203548417+7/11.8627021700857-5/29.4701958106261)
406200.0673239 = beat(304407.281910738,174006.444683136) — La2021
supplementary
63945.069549 = beat(36243.0858091222,23132.1420626563)
63945.069549 = beat(19.8650360864628,19.858866774147)
19.8650360864628 = beat(29.4474984673838,11.8626151546089) — Seidelmann (1992) sidereal
19.858866774147 = beat(29.4235181382615,11.8565229295003) — W’s “factsheet” tropical
—
typo
“64000.26272578 = (378-200) * beat( 47*71 , 163+67+43+19 )” should read
64000.26272578 = (378-178) * beat( 47*71 , 163+67+43+19 )
moderator: typo correction caught in filter
413 ka ≠ 405 ka
Berger 1988 Table 4 (based on Berger 1978)
412883.356708174 = beat(308043,176420) = 360*60*60 / 3.13890104540109
23148.0676670168 = beat(67245722.9816142,23140.1021247331)
11.8565239747501 = harmean(11.85652502,11.8565229295003) ————— tropical center
11.8626000413927 = beat(23148.0676670168,11.8565239747501)
11.8619786476006 = axial(226448.848035122,11.8626000413927)
413066.751892206 = 16/(-7/11.8619786476006+5/29.4572215693577+7/11.8627021700857-5/29.4701958106261)
405202.330118954 = 16/(-7/11.8619937592335+5/29.4572215693577+7/11.8627021700857-5/29.4701958106261)
412992.135930299 = 16/(-7/11.8619786476006+5/29.4572203548417+7/11.8627021700857-5/29.4701958106261)
406201.183093728 = 16/(-7/11.861991666805+5/29.4572203548417+7/11.8627021700857-5/29.4701958106261)
typo
“64000.0824330148 = 1/(1/36746.6589355023+1/36750.3379015986-1/25773.8517155112) — avg(Z17,La10a)” should read
64000.0824330148 = 1/(1/36746.6589355023+1/36750.3379015986-1/25773.8517155112) — avg(Z17,La04a)
Tropical Jupiter-Earth-Venus
Seidelmann (1992)
22.1392314983836 = 1/(3/0.615197263396975-5/1.00001743371442+2/11.8626151546089)
22.1392315068494 = (φ^22+1/11)^(e/11+1/22)
(7920/(2/(1/22.1392315068494+1/JEVtropical)))^2/2 ~=
(378-178)*(163+67+43+19+28)+(19+43+67+163+28)/29/7/3/2 = 64000.26272578
22.1348191900866 = 1/(3/0.61518257-5/0.99997862+2/11.85652502) — Seidelmann (1992)
22.134824012010
22.1348281242668 = 1/(3/0.61518257-5/0.999978616353183+2/11.85652502)
— with Meeus & Savoie (1992) Earth
Sample
123456… = harmean(1739013.7537739,64000.26272578)
64000.26272578 = (378-178)/(1/(19+43+67+163)-1/47/71)
66445.5766845372 = beat(64000.26272578,32600)
66445.6362411932 = beat(1739013.7537739,64000.26272578) — 10/g_2 La(04a,10a)avg
66445.8228999526 = beat(29.4701958106261,29.4571309198874) — Standish (1992)
66445.8598726115 = beat( 64000 , (378-178)*163 )
66447.325358204 = axial(1978109.36263778,68756.9632341238)
197810.936263778 = beat(11.8627021700857,11.861990807677) — Standish (1992)
320.0013136289 = 1/(1/(19+43+67+163)-1/47/71)
215.983736067378 = harmean(320.0013136289,163) ~= 216
messenger relays message (…and promptly forgets)
T11axi
U-N
ke$ha11SSTat1728 =
average
(123456,
-120000)
119999.888888992 = harmean(1925648.56913613,123859.129354423/2)
123859.129354423 = beat(173901.37537739,72337.575351641)
proof that politics is financially unhelpful to messengers:
Φ(Φ(Φ(64000)))-Φ(Φ(Φ(63999))) = 64000/100 = 4096–3456 = 640
“Among the more interesting recent applications of Farey series is the reconstruction of periodic (or nearly periodic) functions from “sparse” sample values.” — Number Theory in Science and Communication
wasn’t covered in ecology
next resume: surveying engineering, a few courses on group theory, stays fluent at programming
math minus myth:
413k & 836
197199.497086455 = beat(11.8627021700857,11.8619886021506)
66746.5920721311 = beat(29.4701958106261,29.4571897660703)
132880.810689512 = harmean(1971994.97086455,68756.9632341238)
130778.074508144 = harmean(1334931.84144262,68756.9632341238)
4132210.38260448 = beat(66440.4053447561,65389.037254072)
413221.038260449 = beat(197199.497086455,133493.184144262)
883.34962186619 = beat ( 11.8619886021506 / 2 , 29.4571897660703 / 5)
835.545597191737 = beat(936.955612197409,441.674810933095)
835.546575435627 Seidelmann sidereal with Seidelmann tropical-converted-to-sidereal with Meeus tropical Earth (Seidelmann tropical Earth’s too imprecise)
supplementary
25761.5669315114 = beat(1.00001743371442,0.999978616353183)
25741.7131783777 = harmean(25761.5669315114,25721.8900031954)
11.8619886021506 = beat(25741.7131783777,11.85652502)
29.4571897660703 = beat(25741.7131783777,29.42351935)
compare 25685 :
11.8620006860684 = beat(25684.9315068493,11.85652502)
29.457264286618 = beat(25684.9315068493,29.42351935)
200596.703290264 = beat(11.8627021700857,11.8620006860684)
67131.402766305 = beat(29.4701958106261,29.457264286618)
132956.674513789 = harmean(2005967.03290264,68756.9632341238)
130814.80478138 = harmean(1342628.0553261,68756.9632341238)
4060167.88923517 = beat(66478.3372568943,65407.4023906899)
406016.788923516 = beat(200596.703290264,134262.80553261)
883.550705939739 = beat ( 11.8620006860684 / 2 , 29.457264286618 / 5 )
600.441865386537 = harmean ( 936.955612197409 , 883.550705939739 / 2 )
835.905488117226 = beat ( 936.955612197409 , 883.550705939739 / 2 )
—
vs.
600.348992633276 = harmean ( 936.955612197409 , 883.34962186619 / 2 )
835.545597191737 = beat ( 936.955612197409 , 883.34962186619 / 2 )
with hindsight,
looking back the other way to enrich perspective
find offset that gives
835.546575435636 = beat(5.93130757730447,5.88949969347676)
800.898956784996 = beat(5.92826251,5.88470387)
699.345939477759 = beat(936.955612197409,400.449478392498)
4290.25973825982 = beat(835.546575435636,699.345939477759)
25741.5584295589 = 6 * 4290.25973825982
11.8619886350108 = beat(25741.5584295589,11.85652502)
29.4571899687161 = beat(25741.5584295589,29.42351935)
883.350168557088 = beat(5.93099431750542,5.89143799374323)
835.546575435603 = beat(936.955612197409,441.675084278544)
assuming lunisolar precession from LLR, find tropical year length
25761.2569581448 = beat(25721.8900031954,12870.7792147794)
1.00001743390371 = (1-(1/240)^1)^(0/1)/(1-(1/240)^2)^(2/2)/(1-(1/240)^3)^(3/3)/(1-(1/240)^4)^(2/4)/(1-(1/240)^5)^(5/5)/(1-(1/240)^6)^(1/6)
0.999978616075404 = axial(25761.2569581448,1.00001743390371)
365.242189521541 = 365.25 * 0.999978616075404
365.242189623 —– Meeus & Savoie (1992)
find associated 1 / ( g_2 – g_5 )
197208.579194933 = beat(11.8627021700857,11.8619886350108)
66747.6325192856 = beat(29.4701958106261,29.4571899687161)
413201.10083897 = beat(197208.579194933,133495.265038571)
may look like a question answered, but raises a very large number of questions, many of which can be answered in a relatively straightforward manner
in none of this do I say what I think
rather I explore what others appear to think
imagine a future archaeologist discovered a bunch of parameter lists from back in the day, but had none of the day’s orreries — similar to exploring Mayan astronomy from the few surviving records that were not destroyed by church powers
I feel profound, deep disappointment with the “expert” “physicists” & “astronomers” who did not show these calculations upfront in 2008 (or soon thereafter).
120k with 496 = s(496) mnemonic
173901.37537739 = 1 / g_2
72337.575351641 = 1 / g_4
1925648.56913613 = 1 / g_8
Clearly pass if UK perfect / too:
https://www.google.com/search?q=“120000+orbital+solutions”
repeating some of above calculations with “factsheet” tropical substituted for Seidelmann tropical
800.913545566894 = beat(5.92826146475017,5.88470362765229)
835.546575435636 = beat(5.93130757730447,5.88949969347676)
699.368187099472 = beat(936.955612197409,400.456772783447)
4291.0971471999 = beat(835.546575435636,699.368187099472)
25746.5828831994 = 6 * 4291.0971471999
25721.7603791197 = beat(25771.4533429313,12873.2914415997)
25721.8900031954 —- LLR lunisolar precession
25771.4533429313 —- LLR general precession
11.8619907223014 = beat(25721.8900031954,11.8565229295003)
29.4572145301644 = beat(25721.8900031954,29.4235181382615)
197787.197012066 = beat(11.8627021700857,11.8619907223014)
66873.9792502976 = beat(29.4701958106261,29.4572145301644)
413084.765415823 = beat(197787.197012066,133747.958500595)
“Transformation to a common framework with phenomenological accord is both feasible and prerequisite to meaningful comparison.”
The architectures intersect at the sample center.
Zero Point Six Two Six Five
2068635.27533919 = beat(75045.60062538,72418.4175234689) = 360*60*60 / 0.6265
5 *
413201.10083897
413084.765415823
26089.1428477971 = 1/(1/365.242-1/365.256)/365.25
25764.210666499 = axial(2068635.27533919,26089.1428478524)
25763.8022254777 = axial(2066005.50419484,26089.1428478524)
25763.7117439949 = axial(2065423.82707912,26089.1428478524)
25747.475783703 = axial(2068635.27533919,26071.9833309978)
25747.0678731026 = axial(2066005.50419484,26071.9833309978)
25746.9775091222 = axial(2065423.82707912,26071.9833309978)
25723.3916962566 = axial(27500000,25747.475783703)
25771.6050119194 = beat(27500000,25747.475783703)
25722.9845484092 = axial(27500000,25747.0678731026)
25771.1963364206 = beat(27500000,25747.0678731026)
25722.894353399 = axial(27500000,25746.9775091222)
25771.1058029947 = beat(27500000,25746.9775091222)
also fits
around 2 numbers
26089.1428478524 = beat(1.00001642710472,0.999978097193703)
reflect imagination
25763.2868175968 = 2/(1/2068635.27533919+1/26079.8270831762+1/25771.4533429313)
25763.082610113 = 2/(1/2066005.50419484+1/26079.8270831762+1/25771.4533429313)
25763.0373718194 = 2/(1/2065423.82707912+1/26079.8270831762+1/25771.4533429313)
25743.0706296651 = 1/(1/2068635.27533919+1/26079.8270831762+1/2/27500000)
25742.6628586311 = 1/(1/2066005.50419484+1/26079.8270831762+1/2/27500000)
25742.5725255684 = 1/(1/2065423.82707912+1/26079.8270831762+1/2/27500000)
25764.2861671507 = 1/(2/2068635.27533919+2/26079.8270831762+1/27500000-1/25721.8900031954)
25763.4692932704 = 1/(2/2066005.50419484+2/26079.8270831762+1/27500000-1/25721.8900031954)
25763.2883356172 = 1/(2/2065423.82707912+2/26079.8270831762+1/27500000-1/25721.8900031954)
25755.1254662824 = axial(2068635.27533919,26079.8270831762)
25731.0270724414 = axial(27500000,25755.1254662824)
11.8619908722245 = beat(25731.0270724414,11.85652502)
29.457203765416 = beat(25731.0270724414,29.42351935)
405623.869655596 = 16/(-7/11.8619908722245+5/29.457203765416+7/11.8627021700857-5/29.4701958106261)
25754.7173132641 = axial(2066005.50419484,26079.8270831762)
25730.6196828558 = axial(27500000,25754.7173132641)
11.8619909588046 = beat(25730.6196828558,11.85652502)
29.4572042993476 = beat(25730.6196828558,29.42351935)
405611.215124344 = 16/(-7/11.8619909588046+5/29.4572042993476+7/11.8627021700857-5/29.4701958106261)
25754.6268955816 = axial(2065423.82707912,26079.8270831762)
25730.5294342941 = axial(27500000,25754.6268955816)
11.8619909779849 = beat(25730.5294342941,11.85652502)
29.4572044176311 = beat(25730.5294342941,29.42351935)
405608.411833619 = 16/(-7/11.8619909779849+5/29.4572044176311+7/11.8627021700857-5/29.4701958106261)
413 ka ≠ 405 ka
413k = laughed / V
J-Speak’n’centersamplease
2215197.1756236 = harmean(2384110.34604552,2068635.27533919)
31M
31266209.0927742 = beat(2215197.1756236,2068635.27533919) = beat(2384110.34604552,2215197.1756236)
U-N ˚Key “duh!” V. 0$
2384110.34604552 = beat(74626.0277273697,72361.0252351259) — La2011 Table V
pub tip 2 far weather left or right
2068635.27533919 = beat(75045.60062538,72418.4175234689) — La2021 ———– \
Read word air do we herd
harmonic means central
at JPL’n’Horizon$
413 ka ≠ 405 ka — Review, Clarification
commerce in equality herd us? “expert” integration around too:
2067197.6 = 1/(1/365.242190955-1/365.256367664193-1/365.242+1/365.256)/365.25
compare
sample center sidereal (wide gaussian central limit measured from Horizons)
with Seidelmann (1992) synodic & Standish (1992) anomalistic
2067888.52703795 = 2/(2/84.0206328048813-2/164.770073452772-1/84.0210821278182+1/164.770057105325-1/84.0331316671926+1/164.793624044745)
2215035.55020828 = 2/(1/84.0206328048813-1/164.770073452772-1/84.0331316671926+1/164.793624044745)
2384728.28958695 = 2/(1/84.0210821278182-1/164.770057105325-1/84.0331316671926+1/164.793624044745)
31128367.4149135 = 2/(1/84.0206328048813-1/164.770073452772-1/84.0210821278182+1/164.770057105325)
413577.705407961 = 2/(10/84.0206328048813-10/164.770073452772-5/84.0210821278182+5/164.770057105325-5/84.0331316671926+5/164.793624044745)
405625.469220913 = 4/(-1/11.8619848813318+1/29.4571542100829-1/84.0206328048813+1/164.770073452772+1/84.0210821278182-1/164.770057105325+1/11.8627021700857-1/29.4701958106261)
supplementary
La(2004a,2010a)average
405629.613215262 = beat(304406.35241565,173901.37537739) = 360*60*60 / 3.195033
La2011 Table 5
2384110.34604552 = beat(74626.0277273697,72361.0252351259) = 360*60*60 / 0.543599000000001
La2021
2068635.27533919 = beat(75045.60062538,72418.4175234689) = 360*60*60 / 0.626499999999999
Berger 1988 Table 4 (based on Berger 1978)
412883.356708174 = beat(308043,176420) = 360*60*60 / 3.13890104540109
focus clarifying fast
resorting to selective sample-reporting
harmonic mean of Seidelmann (1992) & “factsheet” tropical
2319.98996248877 = 2/(1/11.85652502-3/29.42351935+1/83.74740682+1/163.7232045+1/11.8565229295003-3/29.4235181382615+1/83.7474058863792+1/163.723203285421)
2361.98821197643 = 2/(-2/11.85652502+5/29.42351935+3/83.74740682-6/163.7232045-2/11.8565229295003+5/29.4235181382615+3/83.7474058863792-6/163.723203285421)
130476.603433855 = 2/(3/11.85652502-8/29.42351935-2/83.74740682+7/163.7232045+3/11.8565229295003-8/29.4235181382615-2/83.7474058863792+7/163.723203285421)
Standish (1992) anomalistic
2320.07250757488 = 1/(31/11.8627021700857-77/29.4701958106261+77/84.0331316671926-151/164.793624044745)
2362.08778401334 = 1/(31/11.8627021700857-77/29.4701958106261)
130433.865791524 = 1/(77/84.0331316671926-151/164.793624044745)
simple algorithm generates anomalistic coefficients
Why didn’t supposed climate discussion “experts” helpfully point out such key relations more than a decade ago (instead of relentlessly and rudely harassing people)? unknown (maybe best to not know)
Around 413k w[ha]t?
60.9472810249566 = beat( 29.4571565546135 / 2 , 11.8619967799723 )
61.0913774574922 = beat( 29.4235181382615 / 2 , 11.8565229295003 )
25839.316661667 = beat(61.0913774574922,60.9472810249566)
25839.3166616672 = 1/(-1/11.8565229295003+2/29.4235181382615+1/11.8619967799723-2/29.4571565546135)
25839.9700765591 = 1/(1/365.242190955-1/365.256367664193-1/365.242+1/365.256)/365.25/80
25839.… is a limiting case in the following:
JS
25768.8940807006 = beat(29.4571542100829,29.42351935)
25767.9646958303 = beat(29.4571542100829,29.4235181382615)
25767.1000262477 = beat(29.4571565546135,29.42351935)
25766.1707707798 = beat(29.4571565546135,29.4235181382615)
25759.2477144533 = beat(11.8619848813318,11.85652502)
25749.3841166727 = beat(11.8619848813318,11.8565229295003)
25703.258607852 = beat(11.8619967799723,11.85652502)
25693.4378334164 = beat(11.8619967799723,11.8565229295003)
60.9469869828358 = slip(29.4571542100829,11.8619848813318)
60.9472810249566 = slip(29.4571565546135,11.8619967799723)
61.0914225103732 = slip(29.42351935,11.85652502)
61.0913774574922 = slip(29.4235181382615,11.8565229295003)
25778.5476744304 = beat(61.0914225103732,60.9469869828358)
25786.5721095899 = beat(61.0913774574922,60.9469869828358)
25831.2593712702 = beat(61.0914225103732,60.9472810249566)
25839.316661667 = beat(61.0913774574922,60.9472810249566)
25768.8940807012 = harmean(25778.5476744304,25759.2477144533)
25767.9646958309 = harmean(25786.5721095899,25749.3841166727)
25767.100026248 = harmean(25831.2593712702,25703.258607852)
25766.1707707801 = harmean(25839.316661667,25693.4378334164)
UN
25768.9220412472 = beat(164.770073452772,163.7232045)
25768.8919529701 = beat(164.770073452772,163.723203285421)
25769.3218870747 = beat(164.770057105325,163.7232045)
25769.2917978639 = beat(164.770057105325,163.723203285421)
25753.4440578226 = beat(84.0206328048813,83.74740682)
25753.3557707882 = beat(84.0206328048813,83.7474058863792)
25711.299285683 = beat(84.0210821278182,83.74740682)
25711.21128737 = beat(84.0210821278182,83.7474058863792)
4232.12247229939 = slip(164.770073452772,84.0206328048813)
4230.96123210163 = slip(164.770057105325,84.0210821278182)
3635.42278750964 = slip(163.7232045,83.74740682)
3635.42334910848 = slip(163.723203285421,83.7474058863792)
25784.4186405928 = beat(4232.12247229939,3635.42278750964)
25784.4468914384 = beat(4232.12247229939,3635.42334910848)
25827.6069595975 = beat(4230.96123210163,3635.42278750964)
25827.6353051614 = beat(4230.96123210163,3635.42334910848)
25768.9220412472 = harmean(25784.4186405928,25753.4440578226)
25768.8919529701 = harmean(25784.4468914384,25753.3557707882)
25769.3218870747 = harmean(25827.6069595975,25711.299285683)
25769.2917978639 = harmean(25827.6353051614,25711.21128737)
Sometimes I present stuff in reverse (or random) order so it looks like nothing (initially).
Pub 11
4231.48507417337 = slip(164.793624044745,84.0331316671926)
!sh love
25808.1036291684 = beat(4231.48507417337,3635.42278750964)
25808.1319319391 = beat(4231.48507417337,3635.42334910848)
25746.6478202264 =harmean(25771.4533429313,25721.8900031954) ; axial= 12873.3239101132
25746.362539063 =harmean(25770.7446092762,25722.0265616918) ; axial= 12873.1812695315
25746.0772642216 =harmean(25770.0359146014,25722.1631216381) ; axial= 12873.0386321108
earn
25685.4840005208 = beat(25808.1036291684,12873.3239101132)
25685.4559661172 = beat(25808.1319319391,12873.3239101132)
25685.2185485965 = beat(25808.3716271706,12873.3239101132)
25684.9161520955 = beat(25808.1036291684,12873.1812695315)
25684.8881189315 = beat(25808.1319319391,12873.1812695315)
25684.6507119081 = beat(25808.3716271706,12873.1812695315)
25684.3483287774 = beat(25808.1036291684,12873.0386321108)
25684.3202968528 = beat(25808.1319319391,12873.0386321108)
25684.0829003262 = beat(25808.3716271706,12873.0386321108)
25684.9315068493 = 360*60*60/50.4576 Hinnov (2013) citing La
& surely old tropical brew around lunisolar
25808.6614345713 = beat(25684.9315068493,12873.3239101132)
25808.0881267941 = beat(25684.9315068493,12873.1812695315)
25807.514844487 = beat(25684.9315068493,12873.0386321108)
four for berger’s 412883.356708174 = beat(308043,176420)
6014.24268502582 = 1/(2/2369-2/2950)
977.14625279642 = 1/(-4/2369+8/2950)
1503.56067125646 = 1/(8/2369-8/2950)
734.014284213843 = 1/(-4/2369+9/2950)
2790.95447284344 = 1/(-12/2369+16/2950)
41.9990745841137 = 1/(1/378+3/744)-1/(3/378+1/744)
42 = 1/(1/378+3/x)-1/(3/378+1/x)
x = 744.009202345753
x = -38.4092023457526 ; * ? = 1536.3680938301
34378.4816170619 = 68756.9632341238 / 2
1536.7868852459 = 2/(1/378-1/744) ; – 1 = 1535.7868852459
1470.11267120081 = axial(34378.4816170619,1535.7868852459)
1471.02894916053 = axial(34378.4816170619,1536.7868852459)
2360177.1437791 = beat(1471.02894916053,1470.11267120081)
22.1396468061395 = ln(163*67*43*19*11*7*3*2*1)
22.1394391270828 = axial(2360177.14377856,22.1396468061395)
Europe put serene in anomalistic peace
“open Myears to the core US“
36752.2936274202 = 10000/(1/11.8729429230374+1/29.663446337819+1/84.1382639508332+1/164.708162250495+1/11.8627021700857+1/29.4701958106261+1/84.0331316671926+1/164.793624044745)
1184.49968268969 = 2/(4/11.8729429230374-10/29.663446337819-6/84.1382639508332+12/164.708162250495-2/11.8627021700857+5/29.4701958106261+3/84.0331316671926-6/164.793624044745)
2949.9910465466 = 8/(6/11.8729429230374-15/29.663446337819-9/84.1382639508332+18/164.708162250495-4/11.8627021700857+10/29.4701958106261+6/84.0331316671926-12/164.793624044745)
1979.20167161751 = 8/(10/11.8729429230374-25/29.663446337819-15/84.1382639508332+30/164.708162250495-4/11.8627021700857+10/29.4701958106261+6/84.0331316671926-12/164.793624044745)
845.149665922066 = 8/(22/11.8729429230374-55/29.663446337819-33/84.1382639508332+66/164.708162250495-12/11.8627021700857+30/29.4701958106261+18/84.0331316671926-36/164.793624044745)
1690.29933184413 = 16/(22/11.8729429230374-55/29.663446337819-33/84.1382639508332+66/164.708162250495-12/11.8627021700857+30/29.4701958106261+18/84.0331316671926-36/164.793624044745)
936.955612197409 = 1/(-2/11.8627021700857+5/29.4701958106261)
4270.51884168654 = 2/(+1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
9311.85469245976 = 1/(-2/11.8729429230374+5/29.663446337819)
1910.06255631792 = 2/(1/11.8729429230374-3/29.663446337819+1/84.1382639508332+1/164.708162250495)
1535.78372599907 = 2/(-5/11.8729429230374+13/29.663446337819-1/84.1382639508332-1/164.708162250495-4/11.8627021700857+10/29.4701958106261)
1536.74746987137 = 4/(-3/11.8627021700857+7/29.4701958106261+1/84.0331316671926+1/164.793624044745)
1537.7124240514 = 2/(5/11.8729429230374-13/29.663446337819+1/84.1382639508332+1/164.708162250495+1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
2398.25542920475 = 2/(-5/11.8729429230374+13/29.663446337819-1/84.1382639508332-1/164.708162250495-5/11.8627021700857+13/29.4701958106261-1/84.0331316671926-1/164.793624044745)
2400.60639037353 = 4/(-5/11.8627021700857+13/29.4701958106261-1/84.0331316671926-1/164.793624044745)
2402.96196526414 = 2/(5/11.8729429230374-13/29.663446337819+1/84.1382639508332+1/164.708162250495)
1727.83503471697 = 1/(1/11.8729429230374-3/29.663446337819+1/84.1382639508332+1/164.708162250495-1/11.8627021700857+3/29.4701958106261-1/84.0331316671926-1/164.793624044745)
3455.67006943394 = 2/(1/11.8729429230374-3/29.663446337819+1/84.1382639508332+1/164.708162250495-1/11.8627021700857+3/29.4701958106261-1/84.0331316671926-1/164.793624044745)
413k & 405k aren’t the same thing and don’t have the same physical interpretation.
note from above
405625.469220913 = 4/(-1/11.8619848813318+1/29.4571542100829-1/84.0206328048813+1/164.770073452772+1/84.0210821278182-1/164.770057105325+1/11.8627021700857-1/29.4701958106261)
carefully interpret pair of contrasts
J-S: anomalistic – sample center sidereal
U-N: synodic – sample center sidereal
71.1894666213989 = 4/(1/11.8619848813318-1/29.4571542100829+1/84.0206328048813-1/164.770073452772)
71.176974676865 = 4/(1/11.8627021700857-1/29.4701958106261+1/84.0210821278182-1/164.770057105325)
405625.469214634 = 1/(1/71.176974676865-1/71.1894666213989)
near Horizons sample center sidereal (with wide gaussian filter)
1928.97222222222: 405631.838797098
1929.05555555556: 405631.201841123
1929.13888888889: 405630.564866314
1929.22222222222: 405629.927994545
1929.30555555556: 405629.291085387
1929.38888888889: 405628.654132277
1929.47222222222: 405628.01712608
1929.55555555556: 405627.380156706
1929.63888888889: 405626.743146234
1929.72222222222: 405626.106110077
1929.80555555556: 405625.469217488
1929.88888888889: 405624.832161643
1929.97222222222: 405624.195170875
1930.05555555556: 405623.558113895
Sample center minimizes parameter uncertainty (otherwise arising with extrapolation).
La(2004a,2010a)average
405629.613215262 = beat(304406.35241565,173901.37537739) = 360*60*60 / 3.195033
further from sample center
2020.80555555556: 404924.508300225
compare
Standish (1992) : 404924.648581828 = 1/(-1/11.861990807677+0.5/29.4571309198874+1/11.8627021700857-0.5/29.4701958106261)
Keplerian sidereal biases JS toward 836 (no. with special properties) & 4270 = s(4370).
weather
1929 & 2020
dots connect?
unknown
Be aware that some “factsheet” parameter values are being changed without note.
for example:
“Semimajor axis (10[^]6 km) 778.479”
vs.
“Semimajor axis (10[^]6 km) 778.570”
11.8729429230374 = (778.57/149.5978707)^(3/2)
so according to the current values (note the date) :
979.841628732594 = 800/(3/11.8708614026191+3/29.6172724354413+3/83.9002378016092+3/165.80275116722+3/11.8627021700857+3/29.4701958106261+3/84.0331316671926+3/164.793624044745)
compare with (from some time last year when the orbital invariant was 584 and 1728, 3456, & 111000 appeared in other noteworthy metrics)
980.061163397871 = 800/(3/11.8729429230374+3/29.663446337819+3/84.1382639508332+3/164.708162250495+3/11.8627021700857+3/29.4701958106261+3/84.0331316671926+3/164.793624044745)
1992 was a noteworthy orbital publications year. why? unknown.
unbiasing short-duration Seidelmann model-bias
tropical example: Meeus & Savoie vs. Seidelmann
13# = 13*11*7*5*3*2 = 30030
179.331413713169 = beat(13#,178.266850068779)
4231.48507417337 = slip(164.793624044745,84.0331316671926) — Standish (1992) anomalistic
3635.42278750964 = slip(163.7232045,83.74740682) — Seidelmann (1992) tropical
25808.1036291684 = beat(4231.48507417337,3635.42278750964)
180.586243857743 = beat(25808.1036291684,179.331413713169)
0.999978620008116 = beat(11*beat(25808.1036291684,179.331413713169),5.99685290323073/6)
where 5.99685290323073 = beat(0.0754402464065708,0.0745030006844627)
(coefficients derive naturally from slip-cycle calculations — check firsthand too see there’s no trick)
0.99997862 — Seidelmann (1992) tropical
0.999978614618761 = 14/(68/0.0745030006844627-65/0.0754402464065708-3/0.0808503463381246-1/83.74740682+2/163.7232045+1/84.0331316671926-2/164.793624044745)
365.242188989503 = 0.999978614618761 * 365.25
25768.6764038255 = slip(1986.46994984861,179.331413713169)
25768.8851611472 = beat(1.00001742095551,0.999978614618761) — Standish long-duration sidereal
25768.8863425979 = slip(1986.46983643213,179.331413713169)
25768.904246658 = beat(1.00001742095551,0.999978614647502)
365.242189 — Meeus & Savoie (1992)
compare, undrsstand(!sh)C11ear11y why Meeus&Savoie vs. Seidelmann result$in a tie?
_
won4side2wise supplementary
16.9122914926352 = harmean(29.4474984673838,11.8626151546089)
6.56961471832961 = axial(14.7237492336919,11.8626151546089)
656.941108736958 = 4/(14/11.8729429230374-35/29.663446337819-21/84.1382639508332+42/164.708162250495-8/11.8627021700857+20/29.4701958106261+12/84.0331316671926-24/164.793624044745)
10.7425999608459 = beat(16.9122914926352,6.56961471832961)
5.37129998042294 = 10.7425999608459 / 2
65.8581963269421 = slip(19.8650360864628,5.37129998042294)
178.266850068776 = slip(65.8581963269421,9.93251804323141)
_
so the curiosity solved here is why everything’s tuned to the rounded-off Meeus & Savoie (1992) tropical year length instead of the unrounded one 365.242189623. The unrounded-value doesn’t balance the calculations roughly (but accurately — rough only because I don’t want to waste time on this) outlined above. Check carefully for typos. I’m not double-checking this comment before posting.
not sayin’ what I think — and don’t care weather left or right
just exploring what they appear to have thought (in 1992)
add “just” in a corporate thought:
equitable distribution in the first place might PRclue dug a vert monster tax(i)red(!)SSTribution
example:
0.0748024157782259 = axial(0.999978614618761,0.0808503463381246)
18.6129709223414 = beat(0.0748024157782259,0.0745030006844627)
8.84735292934904 = beat(0.0754402464065708,0.0748024157782259)
179.333320338131 = slip(18.6129709223414,8.84735292934904)
1986.46994984861 = slip(5.99685290323073,0.999978614618761)
25808.1036204053 = slip(1986.46994984861,179.333320338131)
25768.6764038255 = slip(1986.46994984861,179.331413713169)
1.0000174212699 = beat(25768.6764038255,0.999978614618761)
365.256363118831 = 365.25 * 1.0000174212699
365.256363004
no. what fits in with 5 more questions
5381732.55840384 = beat(25808.1036204053,25684.9315068493) ; * 5 = 26908662.7920192
25746.3702488544 = harmean(25808.1036204053,25684.9315068493)
25721.759514793 = axial(26908662.7920192,25746.3702488544)
25771.0281234164 = beat(26908662.7920192,25746.3702488544)
SAOT tower translation symmetry
revisiting model bias
blue dot exploration (from far above)
bidecadal tightening/loosening of ~chandler-spaced annual resonance
Seidelmann tropical , ‘factsheet’ tropical
4617.59785383096 = 1/(-75/11.85652502+67/29.42351935+8/163.7232045+4/1.00002638193018)
4639.47468635898 = 1/(-75/11.8565229295003+67/29.4235181382615+8/163.723203285421+4/1.00002638193018)
harmonic mean
19.8588694304936 = beat(29.4235187441307,11.8565239747501)
12.7821856198177 = beat(163.72320389271,11.8565239747501)
1.18552822612307 = beat(6.39109280990887,1.00002638193018)
79.7777684686213 = slip(19.8588694304936,1.18552822612307) ————————————
4628.51041985342 = slip(79.7777684686213,19.8588694304936)
4594.48688801509 — with center-sample sidereal
thus$peakin’tropical’SUNleadJsst ray tune know where?
19.8588778128656 = beat(29.4571542179636,11.8619848807702)
13.8119477664054 = beat(84.0206327956442,11.8619848807702)
1.16935615743884 = beat(6.90597388320271,1.00002638193018)
1150.92719645385 = slip(19.8588778128656,1.16935615743884)
25747.0911189536 = slip(1150.92719645385,19.8588778128656)
25747.0911093819 = 1/(1101/11.8619848807702-985/29.4571542179636-116/84.0206327956442-58/1.00002638193018)
Year 1: 1901
1901.55555555556: 23095.6536441961
[…]
1929.13888888889: 25686.0260271937
1929.22222222222: 25694.7309486262
1929.30555555556: 25703.4420632531
1929.38888888889: 25712.159621942
1929.47222222222: 25720.8839420423
1929.55555555556: 25729.6133567171
1929.63888888889: 25738.349216537
1929.72222222222: 25747.091297793
1929.80555555556: 25755.8368214533
1929.88888888889: 25764.590868348
1929.97222222222: 25773.349914603
1930.05555555556: 25782.1156410475
1930.13888888889: 25790.8878000159
1930.22222222222: 25799.6641094597
1930.30555555556: 25808.4468860748
[…]
2000.30555555556: 36139.1081297612
Year 100: 2000 ——————— JSUNcanNYleads4libera11in the year of ww0!n8hundread
14 months buy uswitch and lure centersamplease bore ‘us pipe’ align
64000.2003306117 = beat(36133.4834429326,23094.6280196825)
miss story US ca$y/n?ode˚k deals he ignore guide dull moon
163.000128847651 = 2/(-1/0.0754402464065708+1/0.0808503463381246+1/1.00002638193018-2/11.8619993833167+2/29.4571726091513)
“His wife ([…] Simms) enters and asks him to enjoy the day with her. […] hesitates for a moment, and then decides he can “make the time” for her. They leave while his work remains on his desk, depicting the calculations for his initial alteration of the timeline.”
In a small project that had been side-lined by ugly world news, I have found time to take up again the case of the Karnak water clock. And yes, Ludwig Borchardt was very likely right, it was designed for an earth obliquity of about 14degrees. Also the date, when looking into the history and what has been learned these past three years, that it matched Dodwell’s. History, geology, astronomy, etc all seem to tell the same story.
Which means any ‘speculative’ extrapolations of obliquity and precession way into the past are fraught with error. The devil is in the detail.
163 year lunisolar clarification
19.8589101021728 = beat(29.4571726091513,11.8619993833167) —- Seidelmann (1992) synodic
13.8119517569484 = beat(84.021212742844,11.8619993833167) ; / 2 = 6.90597587847421
1.16935610023231 = beat(6.90597587847421,1.00002638193018)
0.0748026830551271 = axial(1.00002638193018,0.0808503463381246)
8.85109350901809 = beat(0.0754402464065708,0.0748026830551271)
81.5000644238395 = slip(19.8589101021728,8.85109350901809) ; 2 * 81.5 = 163
783.99710565178 = slip(81.5000644238395,19.8589101021728) ; 784 = 2^4 * 7^2
The 186 = 744 / 4 year cycle received plenty of mention in early climate discussion, but with hindsight it’s quite curious the 81.5 = 163 / 2 year cycle is so rarely mentioned given that it’s anomalistic with anomalistic with minimal coefficients further underscoring structural simplicity.
81.5000644238255 = 1/(-1/0.0754402464065708+1/0.0808503463381246+1/1.00002638193018-2/11.8619993833167+2/29.4571726091513)
supplementary review:

SAOT_seventy_nine_point_five
179, 208
0.500008707605948 = 1.0000174152119 / 2 ———— sidereal
0.0372515003422313 = 0.0745030006844627 / 2 ———- node
1.18341915767752 = slip(0.500008707605948,0.0372515003422313)
synodic
19.8589101021728 = beat(29.4571726091513,11.8619993833167)
90.6635890309744 = slip(19.8589101021728,1.18341915767752)
208.607125440387 = slip(90.6635890309744,19.8589101021728)
anomalistic
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
89.2864126819498 = slip(19.8549641949401,1.18341915767752)
179.67551640805 = slip(89.2864126819498,19.8549641949401)
The familiar combination arises many ways:
anomalistic slip on node (Standish 1992 long-duration model)
208.109946081884 = slip(164.793624044745/2,1.00001071395229)
62.7185479513511 = slip(29.4701958106261,1.00001071395229)
86.3213290603185 = slip(11.8627021700857,1.00001071395229)
combinations:
89.7739054739076 = beat(208.109946081884,62.7185479513511)
96.3883337245009 = harmean(208.109946081884,62.7185479513511)
147.504155772443 = beat(208.109946081884,86.3213290603185)
179.547810947815 = beat(208.109946081884,96.3883337245009)
353.252696309073 = beat(506.5041103816,208.109946081884)
506.5041103816 = beat(104.054973040942,86.3213290603185)
lots of examples – here’s another:
19.8588720868409 = beat(29.42351935,11.85652502) — Seidelmann 1992 tropical
1.18341848397804 = slip(0.500008716857211,0.0372515003422313)
90.650121157873 = slip(19.8588720868409,1.18341915767752)
208.255359804759 = slip(90.650121157873,19.8588720868409)
66.1405984788374 = axial(208.255359804759,96.922613846729)
86.5821063688259 = axial(208.255359804759,148.193519983322)
96.922613846729 = harmean(104.12767990238,90.650121157873)
148.193519983322 = beat(350.181623318329,104.12767990238)
148.193519983322 = axial(513.838652239307,208.255359804759)
148.193519983322 = beat(208.255359804759,86.5821063688259)
350.181623318329 = beat(513.838652239307,208.255359804759)
513.838652239307 = beat(350.181623318329,208.255359804759)
513.838652239307 = beat(208.255359804759,148.193519983322)
132.281196957675 = harmean(208.255359804759,96.922613846729)
700.363246636658 = beat(104.12767990238,90.650121157873)
recent batch of comments is notes arising while reviewing ~chandler-spaced annual-resonance (which tightens/loosens on J-S schedule)

$sayin’arrows$orrery folkUS?
dough luressteady$ ad nos.
64378.7 = 64000+1/5 + 378+1/2
64378.7001217146 = beat(984.952639941831,970.110573105911)
64378.7001223291 = beat(1500.028561168,1465.87359598751)
64378.700121896 = beat(1.0000262476142,1.00001071395229) —– (anomalistic,nodal)
standish long-duration nodal
13.8124952261806 = beat(84.0262133014925,11.862499899747) ; / 2 = 6.90624761309028
1.16932688685509 = beat(6.90624761309028,1.00001071395229) —- n
19.8630730877524 = beat(29.4511026866654,11.862499899747)
1500.028561168 = slip(19.8630730877524,1.16932688685509) ; axial(73500,1500) = 1470
13.8124952261806 = beat(84.0262133014925,11.862499899747) ; / 2 = 6.90624761309028
1.16934812602583 = beat(6.90624761309028,1.0000262476142) —- a
19.8630730877524 = beat(29.4511026866654,11.862499899747)
1465.87359598751 = slip(19.8630730877524,1.16934812602583)
standish long-duration anomalistic
13.8125825263028 = beat(84.0331316671926,11.8627021700857) ; / 2 = 6.90629126315138
1.16932563553267 = beat(6.90629126315138,1.00001071395229) —- n
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
984.952639941831 = slip(19.8549641949401,1.16932563553267)
13.8125825263028 = beat(84.0331316671926,11.8627021700857) ; / 2 = 6.90629126315138
1.16934687465795 = beat(6.90629126315138,1.0000262476142) —- a
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
970.110573105911 = slip(19.8549641949401,1.16934687465795)
moonSSTru$64kwwesstyen0doubt no. 970 ~= axial(64k,985)
977.475268972611 = harmean(984.952639941831,970.110573105911)
fore SST try$UN ode owe˚Ta11yUSsing buyUSDtalk$yuan in short-Dr.USsh!ownmowdough11$
seidelmann short-duration sidereal with meeus & savoie tropical
803.232519807089 = slip(164.791315640078,0.999978614647502)
4506.69103481897 = slip(84.016845922161,0.999978614647502)
977.443322563597 = beat(4506.69103481897,803.232519807089) —- DO$ITmatter? “best experts no.”
standish short-duration nodes
19.8701909486582 = beat(29.4410542264736,11.8634069598561)
61.122947035073 = slip(29.4410542264736,11.8634069598561)
803.058289202708 = slip(61.122947035073,19.8701909486582)
1535.81312258532 = beat(64378.7001223291,1500.028561168)
34378.4816170619 = 68756.9632341238 / 2
1470.13671254847 = axial(34378.4816170619,1535.81312258532)
clear hindsight meandering further down prime-combination (2,3,5) harmonics of s_3
11459.493872354 = 68756.9632341238 / 3 / 2
767.906561292658 = 1535.81312258532 / 2
1354.30744915846 = axial(11459.493872354,1535.81312258532)
980.091141698979 = harmean(1354.30744915846,767.906561292658)
490.04557084949 = axial(1354.30744915846,767.906561292658)
_
2291.89877447079 = 68756.9632341238 / 5 / 3 /2
4655.46225443068 = beat(2291.89877447079,1535.81312258532)
51647.1736263255 = beat(4655.46225443068,4270.51884168654)
25824.287612482 = slip(1986.46310544322,179.333487684639)
1986.46310544322 = slip(5.99685290323073,0.999978616353183)
919.590687109086 = axial(2291.89877447079,1535.81312258532)
836.931405966447 = harmean(919.590687109086,767.906561292658)
from there explore(NASA)model-biases fitting combinations of familiar periods
(including 570 & 940 from bispectrum, lunisolar 1800)
number theory & geometry enthusiasts can have some fun exploring shared spatiotemporal symmetries
51647.1736263255 = beat(4655.46225443068,4270.51884168654)
note:
25823.5868131628
413177.389010604 (to be neither confused nor conflated with 405ka)
source of bias differentiating rounded from unrounded Meeus & Savoie (1992) tropical year length:
1986.46310544322 = slip(5.99685290323073,0.999978616353183)
25824.287612482 = slip(1986.46310544322,179.333487684639)
Seidelmann (1992) short-duration sidereal
19.8650360864628 = beat(29.4474984673838,11.8626151546089)
61.0464822565173 = slip(29.4474984673838,11.8626151546089)
835.546575435631 = slip(61.0464822565173,19.8650360864628)
836.931405966447
Standish (1992) short-duration sidereal
19.8647814727673 = beat(29.4480063959839,11.8626067830889)
61.0418952442288 = slip(29.4480063959839,11.8626067830889)
837.679677971639 = slip(61.0418952442288,19.8647814727673)
recall bispectrum “570” & “940” (V&D explicitly rounded to nearest 10)
709.399728231183 = axial(4655.46225443068,836.931405966447) ; / 2 = 354.699864115591
570.776723842771 = beat(936.955612197409,354.699864115591)
there’s a systematic web of biases — easy to notice if you look
absolutely unbelievable bias …and they appear to just ignore it
quick review of how attention to these systematic biases arose
‘factsheet’ “Semimajor axis (10^6 km)” orbital invariant before webpage-edits noted above:
1503.57723347776 = 1/(2/11.8729429230374-5/29.663446337819-3/84.1382639508332+6/164.708162250495)
analogous Standish anomalistic orbital invariant:
2790.83682251396 = 1/(-2/11.8627021700857+5/29.4701958106261+3/84.0331316671926-6/164.793624044745)
977.138825919375 = axial(2790.83682251396,1503.57723347776)
recall years ago crucial, precise info graphed in a NASA article with NO mention in the text
Standish (1992) long-duration nodal
19.8630730877524 = beat(29.4511026866654,11.862499899747)
61.0124738503575 = slip(29.4511026866654,11.862499899747)
851.495746676794 = slip(61.0124738503575,19.8630730877524)
Standish (1992) anomalistic orbital invariant review
936.955612197409 = 1/(-2/11.8627021700857+5/29.4701958106261)
4270.51884168654 = 2/(1/11.8627021700857-3/29.4701958106261+1/84.0331316671926+1/164.793624044745)
709.941091940763 = axial(4270.51884168654,851.49574667679)
709.399728231183 = harmean(936.955612197409,570.776723842771)
CO(mm)Par(?)ITD&Vmisstory
compare…
2402.89000226555 = beat(1535.81312258532,936.955612197409)
712.79707987104 = harmean(2402.89000226555,418.465702983223)
506.709706363233 = beat(2402.89000226555,418.465702983223)
356.39853993552 = axial(2402.89000226555,418.465702983223)
229.189655647569 = beat(2402.89000226555,209.232851491612)
192.473155032334 = axial(2402.89000226555,209.232851491612)
…with Seidelmann (1992) and ‘factsheet’ tropical orbital invariants 2320 & 2362
709.040580823349 = harmean(2320.01916295313,418.465702983223)
710.968147342896 = harmean(2361.92512664087,418.465702983223)
709.037853399754 = harmean(2319.96076275948,418.465702983223)
710.973863291896 = harmean(2362.05130068208,418.465702983223)
510.555432911728 = beat(2320.01916295313,418.465702983223)
508.569742430404 = beat(2361.92512664087,418.465702983223)
510.558261243064 = beat(2319.96076275948,418.465702983223)
508.563893040081 = beat(2362.05130068208,418.465702983223)
354.520290411674 = axial(2320.01916295313,418.465702983223)
355.484073671448 = axial(2361.92512664087,418.465702983223)
354.518926699877 = axial(2319.96076275948,418.465702983223)
355.486931645948 = axial(2362.05130068208,418.465702983223)
229.97317271958 = beat(2320.01916295313,209.232851491612)
229.569425673017 = beat(2361.92512664087,209.232851491612)
229.973746568426 = beat(2319.96076275948,209.232851491612)
229.568233771419 = beat(2362.05130068208,209.232851491612)
191.924024259968 = axial(2320.01916295313,209.232851491612)
192.206131812913 = axial(2361.92512664087,209.232851491612)
191.92362459153 = axial(2319.96076275948,209.232851491612)
192.206967321516 = axial(2362.05130068208,209.232851491612)
130762.093817962 = beat(2361.92512664087,2320.01916295313) — Seidelmann (1992)
130704.452624679 = beat(173901.37537739,74619.9907876555) — avg(La2004,La2010)
130472.380952381 = beat(2362,2320) — nominal recall
130192.356944535 = beat(2362.05130068208,2319.96076275948) — ‘factsheet’
Seidelmann (1992) synodic ( 398.884 d , 378.0919 d )
19.8589101021728 = beat(1.0920848733744,1.03515920602327)
19.8589101021728 = beat(29.4571726091513,11.8619993833167)
Standish (1992) anomalistic
19.8549641949401 = beat(29.4701958106261,11.8627021700857)
49962.9015303818 = beat(9.92945505108639,9.92748209747005)
4669.6516971879 = beat(49962.9015303818,4270.51884168654)
it’s gettin’ pretty simple
851.49574667679 = beat(4270.51884168654,709.941091940763)
608.74233505026 = axial(4270.51884168654,709.941091940763)
1217.48467010052 = harmean(4270.51884168654,709.941091940763)
851.189733619194 = beat(4270.51884168654,709.728353697658)
608.585917131609 = axial(4270.51884168654,709.728353697658)
1217.17183426322 = harmean(4270.51884168654,709.728353697658)
709.728353697658 = axial(4669.6516971879,836.931405966447)
709.066472938612 = axial(4670,836) — nominal
bias bidecadal tightening/loosening ~chandler-spaced annual-resonance
Seidelmann (1992) tropical
19.8588720868409 = beat(29.42351935,11.85652502)
13.8119494358664 = beat(83.74740682,11.85652502) ; / 2 = 6.9059747179332
1.1692908207961 = beat(6.9059747179332,0.999978614647502)
1217.54190171751 = slip(19.8588720868409,1.1692908207961)
‘factsheet’ tropical
19.858866774147 = beat(29.4235181382615,11.8565229295003)
13.8119466243531 = beat(83.7474058863792,11.8565229295003) ; / 2 = 6.90597331217655
1.16929086109613 = beat(6.90597331217655,0.999978614647502)
1217.15884114366 = slip(19.858866774147,1.16929086109613)
Horizons sample-center sidereal (late 1929)
19.8588778128656 = beat(29.4571542179636,11.8619848807702)
13.8119477664054 = beat(84.0206327956442,11.8619848807702) ; / 2 = 6.90597388320271
1.16929084472603 = beat(6.90597388320271,0.999978614647502)
1217.88194958315 = slip(19.8588778128656,1.16929084472603)
all of the short-duration model biases tie together systematically in a web — at this point I could flood the board with examples — too time-consuming, so select a few examples here & there — e.g.
2931.53450888601 = beat(4669.6516971879,1800.93537030388); / 2 =
1465.76725444301 = beat(2334.82584859395,900.46768515194)
another example
1200.30319518678 = beat(4270.51884168654,936.955612197409)
768.373734935686 = axial(4270.51884168654,936.955612197409)
1536.74746987137 = harmean(4270.51884168654,936.955612197409)
506.811371727754 = beat(2400.60639037357,418.465702983223)
356.348261933772 = axial(2400.60639037357,418.465702983223)
712.696523867544 = harmean(2400.60639037357,418.465702983223)
229.210452464948 = beat(2400.60639037357,209.232851491612)
192.458490281523 = axial(2400.60639037357,209.232851491612)
compare
(Y/n)˚K sh!yuan SSTrat e.g. i.e. $ (in home11and boo!!!mow-rang mark IT)
This one is particularly helpful for understanding a “route CO[$]!” of buy[don˚T!!]US:
‘factsheet’ “Semimajor axis (AU)”
19.8815827583247 = beat(29.4525211998593,11.8693295447839)
61.1813294227419 = slip(29.4525211998593,11.8693295447839)
791.61563705865 = slip(61.1813294227419,19.8815827583247)
Standish (1992) short-duration anomalistic
19.8717059820378 = beat(29.437917453482,11.8634375929488)
61.150816298103 = slip(29.437917453482,11.8634375929488)
791.282376817758 = slip(61.150816298103,19.8717059820378)
Seidelmann (1992) tropical
19.8588720868409 = beat(29.42351935,11.85652502)
61.0914225103732 = slip(29.42351935,11.85652502)
800.898956784996 = slip(61.0914225103732,19.8588720868409)
‘factsheet’ tropical
19.858866774147 = beat(29.4235181382615,11.8565229295003)
61.0913774574922 = slip(29.4235181382615,11.8565229295003)
800.91354556689 = slip(61.0913774574922,19.858866774147)
971.243643085414 = beat(4270.51884168654,791.282376817764)
971.745775776538 = beat(4270.51884168654,791.615637058641)
985.771986182438 = beat(4270.51884168654,800.898956785007)
985.794087509213 = beat(4270.51884168654,800.913545566896)
compare: 970, 985
tersely no. how 130k braids around “2400”
4655.0599755202 = beat(2401,1584) = beat(7^4,Φ(4370))
Φ(4370) = 1584; s(4370) = 4270
concise diagnostics
avg(La2004,La2010) “405k”
405629.613215262 = beat(304406.35241565,173901.37537739) ; * 2 = 811259.226430525
4681.92517691251 = beat(811259.226430525,4655.0599755202)
orbital invariant (0 = -1+2+4-5)
4682 ~= 4/(-J+2S+4U-5N)
Horizons sample-center (late 1929) sidereal
4682.0010852517 = 4/(-1/11.8619848807702+2/29.4571542179636+4/84.0206327956442-5/164.770073482697)
tropical S92 , ‘fs’
4681.56920828498 = 4/(-1/11.85652502+2/29.42351935+4/83.74740682-5/163.7232045)
4681.63367625278 = 4/(-1/11.8565229295003+2/29.4235181382615+4/83.7474058863792-5/163.723203285421)
sew carefully distinguish 4670 (clean & simple)
700 ≠ 710
but they relate systematically
709.941091940763 = axial(4270.51884168654,851.49574667679)
837.227251024752 = beat(4669.6516971879,709.941091940763)
699.994613157589 = axial(4270.51884168654,837.227251024752)
nominally
709.943527918782 = axial(4270.5,851.5) — 851.5 mnemonically “nodal trigon” (long-duration model)
837.29797979798 = beat(4670,710)
699.835242290749 = axial(4270.5,837)
130k spread around “2400”
4669.6516971879 = beat(837.227251024752,709.941091940763)
768.348229845243 = harmean(837.227251024752,709.941091940763) ; * 2 = 1536.69645969049
2400.73087929451 = beat(1536.69645969049,936.955612197409)
compare
1536.74746987137 = harmean(4270.51884168654,936.955612197409) ; / 4 = 384.186867467843
2400.60639037357 = beat(1536.74746987137,936.955612197409)
837.287819185581 = beat(709.941091940763,384.186867467843)
4669.6516971879 = beat(837.227251024752,709.941091940763)
each parameter list incorporates (different) bias
after careful diagnostics combine parameter lists
thus leverage CLT
709.057954338895 = harmean(2320.01916295313,418.477806098704)
710.020476526949 = harmean(2340.78460414252,418.477806098704)
710.985615449755 = harmean(2361.92512664087,418.477806098704)
767.716463946329 = harmean(836.955612197409,709.057954338895) ; * 2 = 1535.43292789266
768.280294615716 = harmean(836.955612197409,710.020476526949) ; * 2 = 1536.56058923143
768.844954077209 = harmean(836.955612197409,710.985615449755) ; * 2 = 1537.68990815442
no. doubtin’ mysteryUS theorrery of spatiotemporal SIM MET treeJ$UN
NASAtech$comm.UN uk8˚C11ear11y & concise
sly with public as they CO[up]don˚T!!sea˚Krus!h?CyaD-ba!T’n’Time^
2403.82126642589 = beat(1535.43292789266,936.955612197409)
2401.06257069987 = beat(1536.56058923143,936.955612197409) = 7.0000456050207 ^ 4
2398.31019963559 = beat(1537.68990815442,936.955612197409)
Φ(4370) = 1584
Φ(1584) = 480
Φ(480) = 128
Φ(128) = 64
Φ(64) = 32
Φ(32) = 16
Φ(16) = 8
Φ(8) = 4
Φ(4) = 2
Φ(2) = 1
Φ(1) = 1
2319 = ΣΦ(4370)
Φ(937) = 936
Φ(936) = 288
Φ(288) = 96
Φ(96) = 32
Φ(32) = 16
Φ(16) = 8
Φ(8) = 4
Φ(4) = 2
Φ(2) = 1
Φ(1) = 1
447 = ΣΦ(936)
447 = ΣΦ(323)
47 = Σφ(323)
4670 = 4270+447-47 ; 4270 = s(4370)
review
4370 (B)
323 =
196883 (M)
-196560 (ll=leechlattice)
‘factsheet’ sidereal orbital invariants
2317.51251648274 = 1/(1/11.8619822039699-3/29.4571389459274+1/84.0120465434634+1/164.788501026694)
2319.57436292966 = 1/(-2/11.8619822039699+5/29.4571389459274+3/84.0120465434634-6/164.788501026694)
beat
2607198.33309978 = 1/(3/11.8619822039699-8/29.4571389459274-2/84.0120465434634+7/164.788501026694)
harmean
2318.54298131375 = 2/(-1/11.8619822039699+2/29.4571389459274+4/84.0120465434634-5/164.788501026694)
~= 2319
4670 = s(4370)+2*(378-178)
+100$ e^add’ll
clues from the trail above:
1469.78833565234 = axial(34378.4816170619,1535.43292789266)
1470.82160357696 = axial(34378.4816170619,1536.56058923143)
1471.85632530777 = axial(34378.4816170619,1537.68990815442)
1470.73643530065 = axial(34378.4816170619,1536.46763779336)
1470.99283468751 = axial(34378.4816170619,1536.74746987137)
investigate
Standish (1992) anomalistic
936.955612197409 = 1/(-2/11.8627021700857+5/29.4701958106261)
-100 =
836.955612197409 — sewCold “philanthropy” makeIT$0
708.940777677122 = harmean(2317.51251648274,418.477806098704)
708.988974163399 = harmean(2318.54298131375,418.477806098704)
709.037177203287 = harmean(2319.57436292966,418.477806098704)
4635.02503296548 = beat(836.955612197409,708.940777677122)
4637.0859626275 = beat(836.955612197409,708.988974163399)
4639.14872585932 = beat(836.955612197409,709.037177203287)
767.647775722693 = harmean(836.955612197409,708.940777677122) ; * 2 = 1535.29555144539
767.676029461057 = harmean(836.955612197409,708.988974163399) ; * 2 = 1535.35205892211
767.704285279291 = harmean(836.955612197409,709.037177203287) ; * 2 = 1535.40857055858
68756.9632341238 = s_3 ; / 2 = 34378.4816170619
1469.66245417388 = axial(34378.4816170619,1535.29555144539)
1469.71423350631 = axial(34378.4816170619,1535.35205892211)
1469.76601648747 = axial(34378.4816170619,1535.40857055858)
anomalistic mine US aha’n’dread ‘factsheet’ sidereal
4637.0859626275 = 4/(-1/11.8619822039699+2/29.4571389459274+4/84.0120465434634-5/164.788501026694)
tiescan discover buyUS$inequalITAS!ANinsightbackword$
sew with hindsightNA!SA$BRI dj-in’likethis$$$
708.988974163399 = axial(4637.0859626275,836.955612197409)
708.988974163399 = harmean(2318.54298131375,418.477806098704)
trop!CO˚ll
800.80488289977 = harmean(836.955612197409,767.647775722693)
800.820256221283 = harmean(836.955612197409,767.676029461057)
800.835630133061 = harmean(836.955612197409,767.704285279291)
not ice
1535.66392291037 = beat(34378.4816170619,1470)
800.905091633743 = harmean(836.955612197409,767.831961455184)
makeIT$SOI’n’v(est!)g_ate$no.1:
Seidelmann (1992) tropical
767.820684260828 = beat(836.955612197409,400.449478392503)
1469.9793331808 = axial(34378.4816170619,1535.64136852166)
‘factsheet’ tropical
767.847501893837 = beat(836.955612197409,400.456772783448)
1470.02847968618 = axial(34378.4816170619,1535.69500378767)
harmonic mean of S92 & ‘fs’
767.834092843172 = beat(836.955612197409,400.453125554758)
1470.00390602271 = axial(34378.4816170619,1535.66818568634)
ad”just”in2˚CbuyUS$Can.
supplementary review of Seidelmann’92 synodic with Standish’92 anomalistic
199851.606121527 = beat(39.7178202043456,39.7099283898802)
99925.8030607636 = beat(19.8589101021728,19.8549641949401)
49962.9015303818 = beat(9.92945505108639,9.92748209747005)
2291.42269145655 = axial(199851.606121527,2318)
4669.6516971879 = beat(49962.9015303818,4270.51884168654)
Numerous Translations
can’t tune time index
970.482212411295 = axial(99925.8030607636,980)
977.603093988831 = harmean(984.82924646072,970.482212411295)
984.82924646072 = beat(199851.606121527,980)
hearsovRoamUNin$sight
“felin’e^e/llUKtrick˚Tun[˚]Knight”
soft’pow’r pllan$ 158 la
n/a he e.g. nor 316
some morewhetherg_$USorg_$0$bllink’n’lleekrootg_$sauce
2g_ood2˚CsumSST!llDOugh!n˚T˚KnoworCO[up]don˚TacheDb8
JS 4670 (100k)
UN 4278 (2.4M)
Seidelmann’92 synodic ( 369.656 d , 367.4867 d )
171.446863617875 = beat(164.770559417647,84.021212742844)
171.446863617875 = beat(1.0120629705681,1.00612375085558)
Standish’92 anomalistic
171.471519050756 = beat(164.793624044745,84.0331316671926)
1192364.14480033 = beat(171.471519050756,171.446863617875) ; * 2 =
2384728.28960065 = beat(342.943038101512,342.893727235751)
4278.18011230483 = beat(2384728.28960065,4270.51884168654)
4278.72826993103 = slip(164.788501026694,84.0120465434634) — ‘factsheet’sidereellaceyuan$
JSUN 4627
4628.00105409015 = axial(2384728.28960065,2*2318.5)
4627.0049312725 = axial(2384728.28960065,2*2318)
$0 don˚T riot in the capIT’ll(D-bai˚TAch!in)IDyach˚T$no.: 2.38k = beat(2*2318,4627)
4627.0049312725 = harmean(1192364.14480033,2318)