Archive for the ‘cosmic rays’ Category


THE CHILLING STARS

Svensmark’s research at the Danish National Space Center suggests cosmic rays play a role in making clouds in our atmosphere. A reduction in cosmic rays in the last 100 years – due to the activity of our Sun – has meant fewer clouds and a warmer Earth.The following extract is from the book’s opening chapter.

The Chilling Stars is published by Icon Books


THE CHILLING STARS: A NEW THEORY OF CLIMATE CHANGE
By Henrik Svensmark & Nigel Calder1 A lazy Sun launches iceberg armadas

Our ancestors endured shocking variations in climate – Events often matched changes in the Sun’s behaviour – Rare atoms made by cosmic rays signal those changes – When their production increased, the world was chilled – But are the cosmic rays the agent, or merely a symptom?

A less public-spirited finder might have put the oddity up for sale on eBay, so the archaeologists of Bern Canton were grateful when Ursula Leuenberger presented them with an archer’s quiver made of birch bark. They were amazed when radiocarbon dating showed the quiver to be 4,700 years old. Frau Leuenberger had picked it up while walking with her husband in the mountains above Thun. There, the perennial ice in the Schnidejoch had retreated in the unusually hot summer of 2003, revealing the relic hidden beneath it.

The hiking couple had unwittingly rediscovered a long forgotten short-cut for travellers and traders across the barrier of the Swiss Alps. To keep treasure-hunters away, the find remained a secret for two years while archaeologists scoured the area of the melt-back and analysed the finds. By the end of 2005 they had some 300 items – from the Neolithic Era, the Bronze Age, the Roman period and medieval times.

The various ages of the items clustered in intervals when the pass of Schnidejoch was open, offering a quick route to and from the Rhone valley south of the mountains. There were no substantial human remains to compare with the murdered Ötztal ‘ice man’, found with a similar quiver high in the Italian Tyrol in 1991 and dated to 3300 BC. But the emergent history of repeated openings and closures of Schnidejoch gave a far more interesting picture of climate change.The Ötztal man is a prize exhibit for those who assert that the climate at the start of the 21st century is alarmingly warm. The ice that preserved his mummified corpse lay unmelted, 3,250 metres above sea level, for more than 5,000 years – since the world was in its warmest phase following the most recent ice age. Then, so the story goes, the manmade global warming of the industrial era outstripped all natural variations and released the body as a warning to us all.Quite different is the impression given by the relics found in the pass of Schnidejoch, at an altitude 500 metres lower than the Ötztal man’s ice-tomb. They tell of repeated alternations between warm periods when the pass was useable and cold periods when it was shut by the ice. The discoveries also cleared up a long-standing mystery about a Roman lodging house found on the slopes above the present-day town of Thun, where there was a Roman temple and settlement. The head of the cantonal archaeological service, Peter Suter, explained his satisfaction at the outcome: ‘We always asked ourselves why the lodging house was there. Now we know that it was on the route leading across the Schnidejoch.’

The youngest item found by the archaeologists was part of a shoe dating from the 14th or 15th century AD. It corresponds with the end of an interval known as the Medieval Warm Period. Thereafter the Schnidejoch was blocked by the glaciers of the Little Ice Age, the most recent period of intense cold. Nominally the Little Ice Age ended around 1850, but the gradual retreat of the ice took a century and a half to clear the pass, until its rediscovery early in the 21st century.Here is a tale of natural variations in climate having a practical influence on the lives and travels of Europeans over 5,000 years. The climate was particularly cold in two periods around 800 BC and 1700 AD. Effects of the latter episode, the Little Ice Age, persisted in the Schnidejoch for so long that even the locals forgot that a useful pass was ever there.

The Medieval Warm Period and the Little Ice Age were an embarrassment for those who, in recent years, wished to play down the natural variations in climate that occurred before the Industrial Revolution. A widely publicised but now discredited graph of temperatures, produced in 1998 by Michael Mann of the University of Massachusetts and his colleagues, tried to iron out the variations. Lampooned as the hockey stick, Mann’s graph showed the world remaining almost uniformly cool through most of the past 1,000 years until 1800. Then temperatures began to climb towards unprecedented highs in the late 20th century – so making the toe of the hockey stick and the supposed onset of an unprecedented episode of man-made global warming.

The relics from the Schnidejoch mock this Orwellian effort to make real-life events that were not politically correct disappear from climate history. They show that warming spells very like that of the past 100 years occurred repeatedly, long before the large-scale use of fossil fuels and the associated emissions of carbon dioxide gas were a possible factor. Attempts to argue that such events were not global are contradicted by abundant evidence for the Medieval Warm Period and the Little Ice Age from East Asia, Australasia, South America and South Africa, as well as from North America and Europe. Probing the errors that generated the hockey stick can be safely left to the statistical pathologists, while we explore the character and rhythms of climate change over centuries and millennia.

Sunspots missing in the Little Ice Age
Atomic bullets raining down from exploded stars, the cosmic rays, leave behind them business cards that record their split-second visits to the Earth’s atmosphere. They take the form of unusual atoms created by nuclear reactions in the upper air. Especially valued by archaeologists as an aid to dating objects is radiocarbon, or carbon-14, made from nitrogen in the air.Taken up into carbon dioxide, the gas of life by which plants grow, the carbon-14 finds its way via the plants and animals into wood, charcoal, bones, leather and other relics. The initial carbon-14 content corresponds to the amount prevailing in the air at the time of death. Then, over thousands of years, the atoms gradually decay back into nitrogen. If you see how much carbon-14 is left in an old piece of wood or fibre or bone, you can tell how many centuries or millennia have elapsed since the plant or animal was alive.

There’s a snag about this gift from the stars, as archaeologists soon discovered. Some of their early radiocarbon dates seemed nonsensical, even contradictory – for example, a pharaoh of Egypt dated as being younger than his known successors. Hessel de Vries of Gronigen found the explanation in 1958. The rate of production of carbon-14 varies. Measurements in well-dated annual rings of growth in ancient trees sorted out the problem, and the archaeologists had more reliable, though often ambiguous dates. And physicists could see changes over thousands of years in the performance of the Sun, as the chief gatekeeper of the cosmic rays. Its magnetic field protects us by repelling many of the cosmic rays coming from the Galaxy, before they can reach the Earth’s vicinity.

The variations that confused the archaeologists followed changes in the Sun’s mood. Low production rates of carbon-14 meant that the Sun was very active, magnetically speaking. When it was lazy, more cosmic rays reached the Earth and the production of carbon-14 shot up.The discovery opened the way to modern interpretations of the link between the Sun and the Earth’s everchanging climate, beginning in the 1960s. Roger Bray of New Zealand’s Department of Scientific and Industrial Research traced the variations in the Sun’s activity since 527 BC. He was able to connect increased production of radio carbon by cosmic rays to other symptoms of feeble solar magnetic activity.

A scarcity of dark spots on the face of the Sun, which are made by pools of intense magnetism, was one such sign. Reports of auroras, which light the northern skies when the Sun is restless, were also scanty when the cosmic rays were making lots of radiocarbon. And most significantly, Bray linked solar laziness and high cosmic rays with historically recorded advances of glaciers, pushing their cold snouts down many valleys. The advances were most numerous in the 17th and 18th centuries, which straddled the coldest period of the Little Ice Age.

Click to access newsnight-_-the-chilling-stars.pdf

(more…)

Cosmic Rays Sink to a 6-Year Low

Posted: January 1, 2023 by oldbrew in cosmic rays, Cycles, solar system dynamics
Tags:

.
The approach to solar max is underway.

Spaceweather.com

Dec. 30, 2022: Cosmic rays reaching Earth just hit a six-year low. Neutron counters in Oulu, Finland, registered the sudden decrease on Dec. 26th when a coronal mass ejection (CME) hit Earth’s magnetic field:

The CME swept aside galactic cosmic rays near our planet, abruptly reducing radiation levels. Researchers call this a “Forbush Decrease,” after American physicist Scott Forbush, who studied cosmic rays in the early 20th century.

The Dec. 26th event continues a trend that began in 2020. Since then, cosmic ray fluxes have been fitfully decreasing as one CME after another hit Earth. The reason is Solar Cycle 25, which began around that time and has been gaining strength. The Forbush Decreases are adding up.

Scott Forbush was the first to notice the yin-yang relationship between solar activity and cosmic rays. When one goes up, the other goes down. CMEs play a big role in this relationship…

View original post 204 more words


When they say ‘sudden’ they don’t mean short-lived. The report notes that ‘some of the events, unlike the brief flashes we recognize as solar flares, lasted for one or two years’. Only a handful of these so-called ‘cosmic barrages’ have occurred in the last 9000 years or so, according to the data.
– – –
One of the events was 80 times more powerful than the strongest solar flare ever recorded, says LiveScience.

A series of sudden and colossal spikes in radiation levels across Earth’s history could have come from a series of unknown, unpredictable and potentially catastrophic cosmic events, a new study has revealed.

Named Miyake events after the lead author of the first study to describe them, the spikes occur roughly once every 1,000 years or so and are recorded as sudden increases in the radiocarbon levels of ancient tree rings.

The exact cause of the sudden deluges of radiation, which periodically transform an extra chunk of the atmosphere’s nitrogen into carbon sucked up by trees, remains unknown.

(more…)

Layers of Earth’s atmosphere


Have experts missed a huge tropical ozone hole that has existed since the 1980s? — asks Geographical. Or could it be more a question of definitions?
– – –
In July, an extraordinary research paper, documenting a huge, previously undetected ozone hole over the tropics, prompted a flurry of news stories.

Said to be seven times the size of the well-known ozone hole over Antarctica, the discovery is cause for ‘great global concern’, according to Qing-Bin Lu, a professor at the University of Waterloo, Canada, and author of the report.

His research suggests that, unlike the Antarctic hole, which only opens in spring, the tropical hole remains open year-round, putting roughly half the world’s population at higher risk from ultraviolet radiation.

Most surprisingly of all, Lu claims that the hole has existed since the 1980s.

(more…)

Cosmic Rays are Decreasing

Posted: July 29, 2022 by oldbrew in Clouds, cosmic rays, Cycles
Tags:

.
The article notes: ‘Climate scientists are engaged in a lively debate about whether or not cosmic rays affect cloud cover.’

Spaceweather.com

July 26, 2022: Cosmic rays in the atmosphere are rapidly subsiding. In the past year alone, radiation levels in the air high above California have plummeted more than 15%, according to regular launches of cosmic ray balloons by Spaceweather.com and Earth to Sky Calculus. The latest measurement on July 23, 2022, registered a 6 year low:

This development, while sudden, is not unexpected. Cosmic rays from deep space are repelled by solar activity; when one goes up, the other goes down. Since 2021, Solar Cycle 25 has roared to life faster than forecasters expected. The onset of the new solar cycle has naturally led to a decrease in cosmic radiation reaching Earth.

To many readers this may sound counterintuitive. After all, don’t solar flares produce radiation? Yes, but most high-energy radiation doesn’t come from the sun; it comes from deep space.Every day galactic cosmic rays from distant supernova explosions…

View original post 180 more words

I’m delighted Ned Nikolov and Karl Zeller have chosen the Talkshop as the venue for the publication of this new open peer review paper on climate sensitivity. Scientific advance at the cutting edge has always been the most important aim of this blog, and I think this paper truly is an advance in our understanding of the climate system and the factors which support and modulate surface temperature on Earth and other rocky planets. 

The paper is mathematically rigorous, but is also accessible to everyone, thanks to Ned and Karl’s exemplary effort to fully explain their concepts and definitions in terms which can be understood by any interested reader who has some familiarity with the climate debate. Building on the bedrock of their 2014 and 2017 papers, this new work extends the applicability and validates the postulates of those previous papers by examining the causes of variability in planetary surface temperature and incorporating the previous findings in quantifying and deriving equations to model them. They find that Earth is sensitive to changes in cloud cover, which affects the amount of solar shortwave radiation reaching the surface, but not very sensitive to changes in Total Solar Irradiance arriving at the top of the atmosphere. They also find that the sensitivity to changes in CO2 levels has been heavily overestimated by current climate models. They show that a doubling of atmospheric CO2 concentration from 280 ppm to 560 ppm will cause an undetectable global warming of 0.004K.

A PDF of the paper can be downloaded here:  ECS_Universal_Equations.

______________________________________________________________________

Exact Formulas for Estimating the Equilibrium Climate Sensitivity of Rocky Planets & Moons to Total Solar Irradiance, Absorbed Shortwave Radiation, Planetary Albedo and Surface Atmospheric Pressure.
Ned Nikolov, Ph.D. and Karl Zeller, Ph.D.
April, 2022

1. Introduction

The term “Equilibrium Climate Sensitivity” (ECS) has become a synonym for the steady-state response of global surface temperature to a modeled long-wave radiative forcing caused by a doubling of atmospheric CO2 concentration with respect to an assumed pre-industrial level of 280 ppm. According to climate models based on the Greenhouse theory, an increase of atmospheric CO2 from 280 ppm to 560 ppm would produce a net radiative forcing (i.e. an atmospheric radiant-heat trapping) of 3.74 W m-2 (Gregory et al. 2004) resulting in a global surface warming between 2.5 K and 4.0 K with a central estimate of 3.0 K according to IPCC AR6 (see p. 11 in Climate Change 2021: The Physical Science Basis. Summary for Policymakers). This implies an average unit ECS of 3.0/3.74 = 0.8 K / (W m-2) with a range of 0.67 ≤ ECS ≤ 1.07 K / (W m-2). Contemporary climate science and IPCC Assessment Reports do not discuss global temperature sensitivities to changes in cloud albedo, absorbed solar radiation or total surface atmospheric pressure. Consequently, no equations have been derived/proposed thus far to calculate these sensitivities. Part of the reason is that variations of cloud albedo are typically viewed in modern climate science as internal feedback to a climatic change induced by external forcing such as increasing anthropogenic carbon emissions. This notion is based on the 19th-Century Greenhouse theory (Arrhenius 1896) adopted by IPCC, which attributes most of the observed warming during the 20th Century and especially over the past 40 years to rising atmospheric  CO2 concentrations believed to trap outgoing long-wave radiation in the Earth’s troposphere and reduce the rate of surface infrared cooling to Space.

However, a plethora of studies published during the past 15 years have shown through both satellite and surface observations that the absorption of solar radiation by the Earth-atmosphere system has increased significantly since 1982 due to a decreased cloud cover/albedo, a phenomenon often referred to as “global brightening” (e.g. Goode & Pallé 2007; Wild 2009; Herman et al. 2013; Stanhill et al. 2014; Hofer et al. 2017; Pfeifroth et al. 2018; Pokrovsky 2019Delgado-Bonal et al. 2020; Dübal & Vahrenholt 2021;  Yuan et al. 2021).

(more…)

Over at WUWT, Willis has been up to his usual trick of mangling data in a vain attempt to discredit scientists who find strong links between the Sun’s variation and Earth’s weather and climatic patterns. This time it’s Le Mouel et al who get the treatment in his ‘analysis’ of their 2010 paper “Solar forcing of the semi‐annual variation of length‐of‐day

As usual, Willis gets things upside down and then sets up a straw-man argument. He asks: “So … is there a correlation between sunspots and zonal wind speeds?” The answer to which is no, and the paper’s authors never claimed there was. However, as Fig 1 of Le Mouel et al’s paper shows, there is a strong anti-correlation between solar variation and the semi-annual variation of Length of Day (LOD) which is itself well correlated with changes in zonal wind speeds. For obvious reasons, Willis doesn’t show his readers Fig 1, reproduced here for your academic study.

Figure 1. Long‐term variations in the amplitude a of the semiannual oscillation in lod (in blue). A 4‐yr centered sliding
window is used. (a) Comparison of the semiannual amplitude of lod with the sunspot number WN (red); WN is both
reversed in sign and offset by one year
(see text). (b) Comparison of the detrended semiannual amplitude of lod (blue) with
the sunspot number WN (red); WN is reversed in sign and offset by one year. (c) Comparison of the semiannual amplitude
of lod (blue) with galactic cosmic ray flux GCR (red); GCR is neither reversed in sign nor offset (see text).
(more…)

Credit: Institute of Physics

This looks like progress, although more research will be needed to try to better understand how the relevant effects work in practice.
– – –
A new study published in Nature Scientific Reports by researchers at the Danish National Space Institute at the Technical University of Denmark (DTU) and The Hebrew University of Jerusalem suggests that the Sun’s activity in screening cosmic rays affects clouds and, ultimately, the Earth’s energy budget with concomitant climatic effects, says David Whitehouse @ NetZeroWatch.

This research, by Henrik Svensmark, Jacob Svensmark, Martin Bødker Enghoff, and Nir Shaviv supports 25 years of discoveries that point to a significant role for cosmic rays in climate change.

(more…)

An IPCC scientist on twitter alerted me to this animation created by Chris Rentsch which analyses the data from the AIRS satellite measuring outgoing longwave radiation.

Here’s a still from the end of the video sequence.

As we can see, by 2019, there is a decrease in OLR at the wavelengths absorbed by CO2 (13-15um) as its atmospheric fraction increases. But we can also see that there is a much bigger increase in OLR at the wavelengths within the ‘atmospheric window’ (10-13um) where it isn’t absorbed by any atmospheric gases.

(more…)

solarflare

Solar flare erupting from a sunspot [image credit: space.com]

Using trees as solar cycle and cosmic ray detectors here. The researchers say: ‘Notably, other evidence suggests that the sun was also undergoing a decades-long period of increasing activity.’ We may ask, with a view to the current era: how often does that happen, and why?
– – –
The sun constantly emits a stream of energetic particles, some of which reach Earth, says Phys.org.

The density and energy of this stream form the basis of space weather, which can interfere with the operation of satellites and other spacecraft.

A key unresolved question in the field is the frequency with which the sun emits bursts of energetic particles strong enough to disable or destroy space-based electronics.

One promising avenue for determining the rate of such events is the dendrochronological record. This approach relies on the process by which a solar energetic particle (SEP) strikes the atmosphere, causing a chain reaction that results in the production of an atom of carbon-14.

(more…)

.
.
Which brings us back to the old conundrum: do cosmic rays affect the Earth’s weather / climate, and if so, how and how much?

Spaceweather.com

August 11, 2020: Cosmic rays are bad–and they’re probably going to get worse.

That’s the conclusion of a new study entitled “Galactic Cosmic Radiation in Interplanetary Space Through a Modern Secular Minimum” just published in the journal Space Weather.

“During the next solar cycle, we could see cosmic ray dose rates increase by as much as 75%,” says lead author Fatemeh Rahmanifard of the University of New Hampshire’s Space Science Center. “This will limit the amount of time astronauts can work safely in interplanetary space.”

spacewalk

Cosmic rays are the bane of astronauts. They come from deep space, energetic particles hurled in all directions by supernova explosions and other violent events. No amount of spacecraft shielding can stop the most energetic particles, leaving astronauts exposed whenever they leave the Earth-Moon system.

Back in the 1990s, astronauts could travel through space for as much as 1000 days before they…

View original post 430 more words

Browsing twitter recently I ran across this short video of a solar flare shot a few days ago.

After asking for some clarification on frame rate I was really intrigued.

(more…)

.
.
Possible link between cosmic rays and ‘sprites’ as Earth experiences the solar minimum.

Spaceweather.com

April 23, 2020: A series of unusually severe spring storms parading across the southeastern USA has residents taking shelter from golf-ball sized hail and dangerous tornadoes. High above the maelstrom, sprites are dancing. Paul M. Smith of Edmond, Oklahoma, captured these specimens on April 22nd.

“There were tornado warnings and very large hail throughout the night,” says Smith. “I photographed the sprites through a clearing around midnight.”

Sprites are a form of electricity in powerful storm clouds. While regular lightning lances down, sprites leap up. They can reach all the way to the edge of space 90 km or more above Earth’s surface. Spring thunderstorms often produce the year’s first big sprites, and the sightings continue through late summer.

“My camera was pointed toward Oklahoma City,” says Smith, “and the sprites were about 150 miles away.” This radar weather map shows shows the observing geometry:

When observing sprites, this kind…

View original post 155 more words

Saturn seen across a sea of methane on Titan by Huygens probe 2005


Some extracts from an article at Phys.org, bypassing the chemistry details. A research professor commented: “The process could be universal”. Interesting…
– – –
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

The team found a chemical footprint in Titan’s atmosphere indicating that cosmic rays coming from outside the Solar System affect the chemical reactions involved in the formation of nitrogen-bearing organic molecules.

This is the first observational confirmation of such processes, and impacts the understanding of the intriguing environment of Titan.

(more…)

Volcanic eruption


How good is the evidence for such a connection, and what theories do we have? Does a really low solar minimum – like now – make a difference? Here’s PW’s overview of its article.

Over the long term, the sun is the main driver of weather and climate on Earth and it is also directly connected to such phenomenon as the aurora borealis also known as the northern lights, upper atmospheric “high-latitude blocking”, and the influx of cosmic rays into Earth’s atmosphere, says Perspecta Weather.

The aurora borealis tends to occur more often during times of increased solar activity though they can actually take place at any time of a solar cycle.

(more…)


As this is going on, cosmic rays are near a record high since measurements began. Researchers are using natural cosmic rays this time.

CERN’s colossal complex of accelerators is in the midst of a two-year shutdown for upgrade work.

But that doesn’t mean all experiments at the Laboratory have ceased to operate.

The CLOUD experiment, for example, has just started a data run that will last until the end of November, reports Phys.org.

The CLOUD experiment studies how ions produced by high-energy particles called cosmic rays affect aerosol particles, clouds and the climate.

(more…)

.
.
What, if anything, might this mean for the coming Northern Hemisphere winter?

Spaceweather.com

Oct. 3, 2019: Solar Minimum is underway, and it’s a deep one. Sunspot counts suggest it is one of the deepest minima of the past century. The sun’s magnetic field has become weak, allowing extra cosmic rays into the solar system. Neutron monitors at the Sodankyla Geophysical Observatory in Oulu, Finland, show that cosmic rays are percentage points away from a Space Age record:

crinfo2

Researchers at the Sodankyla Geophysical Observatory have been monitoring cosmic rays since 1964. When cosmic rays hit Earth’s atmosphere, they produce a spray of secondary particles that rain down on Earth’s surface. Among these particles are neutrons. Detectors in Oulu count neutrons as a proxy for cosmic rays.

As the top panel shows, cosmic rays naturally wax and wane with the 11-year solar cycle. During Solar Maximum cosmic rays are weak; during Solar Minimum they are strong. The Space Age record for cosmic rays was set…

View original post 159 more words

.
.
Are the increased cosmic rays of solar minimum at work here? A strong possibility it seems.

Spaceweather.com

August 30, 2019: You never know what you might see in the wake of a big storm. On Aug. 25th, Chinese astrophotographer Chao Shen of Shaoxing City went outside to photograph the Milky Way. A typhoon named “White Deer” had passed through the day before, and the storm clouds were parting. “I saw the stars–but that’s not all,” says Shen. “A Gigantic Jet leaped up right before my eyes!”

gj

Gigantic Jets are lightning-like discharges that spring from the tops of thunderstorms, reaching all the way to the edge of space. They’re related to sprites, but larger and more powerful.

“Shen definitely caught a Gigantic Jet,” confirms Oscar van der Velde of the Lightning Research Group at the Universitat Politècnica de Catalunya. “It looks like it may have reached as high as 90 km above the ground.”

“Gigantic Jets are much more rare than sprites,” says van der Velde. “While…

View original post 210 more words

.
.
Plus: how big will the bite of the ongoing solar minimum be, compared to the last one? We’re due to find out sometime soon.

Spaceweather.com

July 16, 2019: Note to astronauts: 2019 is not a good year to fly into deep space. In fact, it’s shaping up to be one of the worst of the Space Age.

The reason is, the solar cycle. One of the deepest Solar Minima of the past century is underway now. As the sun’s magnetic field weakens, cosmic rays from deep space are flooding into the solar system, posing potential health risks to astronauts.

NASA is monitoring the situation with a radiation sensor in lunar orbit. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) has been circling the Moon on NASA’s Lunar Reconnaissance Orbiter spacecraft since 2009. Researchers have just published a paper in the journal Space Weather describing CRaTER’s latest findings.

lroAbove: An artist’s concept of Lunar Reconnaissance Orbiter.

“The overall decrease in solar activity in this period has led to an increased flux of…

View original post 540 more words

An important new solar paper by Prof Valentina Zharkova and co-authors S. J. Shepherd, S. I. Zharkov & E. Popova  published in ‘Nature’ has incorporated the solar-planetary theory we’ve been researching and advancing here at the talkshop over the last decade. As well as further developing her previous double dynamo theory which now accounts for the last several millennium’s solar grand minima and maxima, she includes discussion of Fairbridge, Mackey, Shirley, Charvatova and Abreu et al’s work. Central to the new hypothesis is the motion of the Sun around the barycentre of the solar system, described as the Solar Inertial Motion [SIM].

Left plot: the example of SIM trajectories of the Sun about the barycenter calculated from 1950 until 210034. Right plot: the cone of expanding SIM orbits of the Sun35 with the top showing 2D orbit projections similar to the left plot. Here there are three complete SIM orbits of the Sun, each of which takes about 179 years. Each solar orbit consists of about eight, 22-year solar cycles35. The total time span is, therefore, three 179-year solar cycles31, or about 600 years. Source: Adapted from Mackey35. Reproduced with permission from the Coastal Education and Research Foundation, Inc

Following my discussion with her at dinner following her talk in London last year, Zharkova now agrees with us that the SIM induced by planetary motion affects sunspot production and solar activity levels.

(more…)