Archive for the ‘ozone’ Category

Is La Niña having an effect on Antarctica already?

Dec. 2, 2020: Consider it the tip of the iceberg. Noctilucent clouds (NLCs) over the south pole are AWOL.

“Normally we see the first NLCs of the southern season around Nov. 21st,” says Cora Randall of the University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP). “But this year, it’s already December and we’re still waiting.”

Above: What a different one year makes. NASA’s AIM spacecraft took these pictures of NLCs over Antarctica on Nov. 29, 2019 (left) and Nov. 29, 2020 (right)

Missing NLCs is just one of the curious weather patterns currently underway at the southern end of our planet.

Making a list: (1) Earth’s southern ozone hole is not only open, but also the biggest it’s ever been in December. (2) The air above Antarctica is currently at record cold levels for this time of year–the result of an icy polar vortex that refuses to break…

View original post 226 more words

Image credit:

That’s a large chunk of the global food supply in the dock then, according to IPCC-based ‘greenhouse’ climate theories that perform badly in climate models, leading to endless over-prediction of global warming.
– – –
The growing use of nitrogen fertilisers in world food production could put ambitious climate targets out of reach, as it leads to rising levels of nitrous oxide (N2O) in the atmosphere, a new University of Oslo study shows.

Nitrous oxide (N2O) is a highly potent greenhouse gas, and its impact on global warming is 300 times larger than that of carbon dioxide (CO2). Once emitted, N2O remains in the atmosphere for more than 100 years. What’s more – it also depletes the ozone layer.

If left unabated, the emissions resulting from the growing use of nitrogen fertilisers will require bigger reductions in CO2 emissions to reach the goal of the Paris Agreement to keep the global temperature rise this century well below 2°C above pre-industrial levels, according to the study.



As Accuweather explains here, research has shown that a combination of conditions at solar minimum can create this effect.
– – –
The European Union’s Earth observation program said Tuesday that the ozone hole over Antarctica has swelled to its largest size and deepest level in years, reports

Experts at the Copernicus Atmospheric Monitoring Service said a strong, stable and cold polar vortex has driven the expansion, and called for greater international efforts to ensure countries abide by an international accord to phase out use of ozone-depleting chemicals.

Vincent-Henri Peuch, who heads the service, said in a statement that the ozone hole was “definitely” among the largest in the last 15 years.


One for the ‘planet on fire’ crowd to ponder, as the long solar minimum continues.
– – –
Cold temperatures and a strong polar vortex allowed chemicals to gnaw away at the protective ozone layer in the north, says The GWPF.

A vast ozone hole — likely the biggest on record in the north — has opened in the skies above the Arctic. It rivals the better-known Antarctic ozone hole that forms in the southern hemisphere each year.

Record-low ozone levels currently stretch across much of the central Arctic, covering an area about three times the size of Greenland (see ‘Arctic opening’).


Variation in solar activity during a recent sunspot cycle [credit: Wikipedia]

This seems worth another airing in the face of today’s insistent, but evidence-light, claims from climate obsessives that the world’s present and future weather is going to be largely determined by human activities.

If the energy from the sun varies by only 0.1 percent during the 11-year solar cycle, could such a small variation drive major changes in weather patterns on Earth? – asks Universe Today.

Yes, say researchers from the National Center for Atmospheric Research (NCAR) who used more than a century of weather observations and three powerful computer models in their study.

They found subtle connections between solar cycle, the stratosphere, and the tropical Pacific Ocean that work in sync to generate periodic weather patterns that affect much of the globe.

Scientists say this will help in predicting the intensity of certain climate phenomena, such as the Indian monsoon and tropical Pacific rainfall, years in advance.


Arctic sea ice [image credit:]

The headline is straight from the research press release. Of course that suggests alarmists can only hope to blame human-caused ‘carbon emissions’ for the other half of any recent warming, by invoking their own version of a planetary ‘greenhouse effect’.
– – –
Ozone-depleting substances (ODSs) may be responsible for nearly half of Arctic warming from 1955 – 2005, according to a study published in Nature Climate Change.

These findings highlight an unrecognized source of twentieth-century Arctic climate change.

ODSs – halogen compounds that destroy the protective layer of ozone in the upper atmosphere – were used as propellants, refrigerants and solvents during the twentieth century.

Since the 1987 Montreal Protocol, ODS emissions have been curbed, and the ozone layer is now in slow recovery.


Image credit:

Southern hemisphere spring, that is.

European weather scientists believe the ozone hole over the Antarctic this spring may be one of the smallest since the mid-1980s, says stuff(NZ).

Experts at the Copernicus Atmosphere Monitoring Service (CAMS) have observed strange behaviours of the annual ozone hole this season.

Not only is it already shrinking and well on the way to being about half the size it usually is at this time of year, but also it began forming about two weeks earlier than usual and it is off-centre, away from the South Pole.

They say that is probably the result of the rare sudden stratospheric warming, which has been under way about 30km above Antarctica since last month.


leak.smlThe hole in the ozone layer is now steadily closing, but its repair could actually increase warming in the southern hemisphere, according to scientists at the University of Leeds.

The Antarctic ozone hole was once regarded as one of the biggest environmental threats, but the discovery of a previously undiscovered feedback shows that it has instead helped to shield this region from carbon-induced warming over the past two decades.

High-speed winds in the area beneath the hole have led to the formation of brighter summertime clouds, which reflect more of the sun’s powerful rays.


Credit: Environment Canada

Whether this tells us anything about long-term climate trends is not clear, but worth a mention anyway. The report from states: ‘Scientists said the smaller ozone hole extent in 2016 and 2017 is due to natural variability and not a signal of rapid healing’.

Measurements from satellites this year showed the hole in Earth’s ozone layer that forms over Antarctica each September was the smallest observed since 1988, scientists from NASA and NOAA announced today.

According to NASA, the ozone hole reached its peak extent on Sept. 11, covering an area about two and a half times the size of the United States – 7.6 million square miles in extent – and then declined through the remainder of September and into October.


It’s finally happening. Thanks to Herculean efforts by Niklas Morner, we are presenting a two-day conference in central London on the 8-9th September. Speakers are coming from all over the world to present their work, and it is not to be missed!


Take the 8-9th September off work and join us for this historic event. The first UK climate conference in decades which will counter the scaremongering of the IPCC with a cool, rational approach to the study of climate change, presenting alternative explanations, new data, theory and commentary. Topics include solar-planetary theory, causes of ENSO, sea ice extent, sea level, ozone depletion, volcanos, regional forecasting, journal gatekeeping and many more.

The list of contributors is long, we are packing a huge number of presentations into this two day event. Speakers include Niklas Morner, myself, Ned Nikolov and Karl Zeller,  Nicola Scafetta, Per Strandberg, Jan-Erik Solheim, and thats before lunch on day one! Piers Corbyn will be there! So will  Christopher Monckton! See the full programme and the extended abstracts in this 35 Megabyte document for full details. There are also some travel and booking details on the website. An updated version is available on reseachgate


Ozone hole over Antarctica (Nov. 2014) [image credit:]

Ozone hole over Antarctica (Nov. 2014) [image credit:]

Of course the people behind the CFC ban are patting themselves on the back, but the role of other variables in the atmosphere may have been ignored or overlooked. Extracts from a BBC News report follow.

Researchers say they have found the first clear evidence that the thinning in the ozone layer above Antarctica is starting to heal.

The scientists said that in September 2015 the hole was around 4 million sq km smaller than it was in the year 2000 – an area roughly the size of India.


sun-planetFrom Science Nordic:

The Sun regularly, spews out solar flares–violent explosions that hurl enormous amounts of plasma into space, disrupting satellites and causing power failures here on Earth.

But these outbreaks are still small compared with the gigantic eruptions on other stars. These so-called ‘superflares’ can be up to 10,000 times bigger than the largest solar flares from our own sun.

Now new research suggests that our sun might be capable of forming similarly large superflares every 1000 years, and this could have devastating consequences, says lead-author Christoffer Karoff, from the Department of Geoscience, Aarhus University, Denmark.

“We know that these electrical particles from the Sun destroy the ozone layer. It’s suggested that the major flares that we know of led to a reduction in the ozone layer of five per cent. But no one really knows what will happen at this [superflare] level,” says Karoff.


The Role Of Ozone In The Earth’s Climate

Posted: March 14, 2016 by oldbrew in atmosphere, climate, ozone

Erl Happ explains: To understand how climate evolves we have to comprehend the ‘ozonosphere’.


In the 1920’s the inventor of the Dobson Spectrometer designed to measure ozone in the atmosphere, Gordon Dobson, quickly discovered that total column ozone maps surface pressure. Low pressure cells generated in high latitudes have fewer molecules in the atmospheric column because the upper portion is ozone rich, ozone absorbs infrared radiation from the Earth and the upper air is therefore more rarefied. The reduction in density aloft fully, and in fact over-compensates, for the coldness and density of the air at the surface. By contrast High pressure cells are dense above and relatively less dense below because they originate in the warmer ozone poor mid latitudes.

The ozone content of the air varies on all time scales.

Because the distribution of ozone is a secondary determinant of atmospheric pressure (along with the absorption of radiant energy from the sun as the primary determinant) its distribution is allied to wind…

View original post 2,826 more words

My thanks to talkshop reader Jamal Munshi for alerting me to his paper on ozone and aerosols. It makes a strong case for viewing the ozone level above the Antarctic as a special case due to its unique geography, calling into question conclusions about human emissions drawn by scientists and acted on by the Montreal protocol. This is important as this agreement has been used as a template for ‘climate action’ subsequently.


The overall structure of changes in total column ozone levels over a 50-year sample period from 1966 to 2015 and across a range of latitudes from -90o to +71o shows that the data from Antarctica prior to 1995 represent a peculiar outlier condition specific to that time and place and not an enduring global pattern. The finding is inconsistent with the RowlandMolina theory of chemical ozone depletion. 1 1.


In 1971, renown environmentalist James Lovelock studied the unrestricted release of halogenated hydrocarbons (HHC) into the atmosphere from their use as aerosol dispensers, fumigants, pesticides, and refrigerants. He was concerned that (1) these chemicals were man-made and they did not otherwise occur in nature and that (2) they were chemically inert and that therefore their atmospheric release could cause irreversible accumulation. In a landmark 1973 paper by Lovelock, Maggs, and Wade he presented the discovery that air samples above the Atlantic ocean far from human habitation contained measurable quantities of HHC (Lovelock, Halogenated hydrocarbons in and over the Atlantic, 1973). It established for the first time that environmental issues could be framed on a planetary scale and it served as the first of three key events that eventually led to the Montreal Protocol and its worldwide ban on the production, sale, and atmospheric release of HHC (UNEP, 2000).


Chris Curnow

a quote from “The Nonsense That is Ozone-Depletion”
by Ken Ring (2009) at
erebusOne Hole is Larger than the Other
Let’s look at one last factor, so often reported; that the Antarctic hole is larger than the Arctic one. One would think that even if inert heavier-than-air substances could make it up into space, that they would do it more around the densely populated regions of earth — the northern hemisphere; and affect the Arctic Hole more than the Antarctic. No one is disputing that the hole over the Antarctic is definitely much bigger. The Southern hemisphere has a longer winter than the Northern hemisphere because Earth is further from the sun in July than in January. Longer winter means bigger hole. But also maybe, some chlorine is coming from some other source, instead of CFCs. Let’s look around.

Aha! Just a few miles upwind from the Antarctic camp where all the readings about ozone-depletion originate from, is a rather large hill called Mt Erebus.


Paul Vaughan has produced a six page .pdf document crammed with the fruits of his research into the ways in which solar variation affects Earth’s climate. Several of the observations and concepts coincide with the work we have been doing here at the talkshop over the last six years to unravel the mysteries of solar system dynamics and their effect on Terrestrial variation. Paul has applied his stats and visualisation skills and thorough approach to referencing, including direct links to data. This has resulted in a landmark document which readers will find both useful and inspiring. It demonstrates the progress that has been made in solar-terrestrial theory, (with hints about the underlying planetary solar relations too).




A new facility here for creating clear air insolation data, without the more involved absorption effects or cloud, etc. needed some testing and so…


This plot appeared during July 2012[1] after Dr. Hans Jelbring made available hourly data from the Koorin Expedition to Daly Waters, Australia during the astral winter of 1974[2]. A new plot trace has been added, computed by a new dynamic language[3] library, a wrapper around an unaltered version of NREL SOLPOS[4]. This produces an output value for one point in time, the plots here were created by a program feeding in different parameters, producing a time series, all very simple.

This result is similar to a result with data from Chilbolton Observatory, England from a Kip & Zonnen CNR4 net pyranometer / pyrgeometer[5]. Around 22% of inward solar radiation is absorbed by the atmosphere in excess of that computed by SOLPOS.


Several Talkshop commenters have asked for more information on Ferenc Miskolczi’s theory about atmospheric law. The information is already on the Talkshop but explicitly bringing it out does no harm. The information is widely available.

There are two presentations which may be useful, a general one which touches on the theory and then an attempt by a colleague to explain.


As I understand it: The fundamental for Earth is water compensates for CO2 leading to a constant factor involving 1/3 for atmospheres. For Earth also the atmosphere can be considered as convection series connected with radiation. It fits for Mars and Lunar.


Hockey Schtick: CO2 does what exactly?

Posted: September 12, 2014 by tchannon in atmosphere, Natural Variation, ozone

Oh the irony!
Cutting CO2 emissions is…



Yes, that’s right, deadly man-made CO2 is the largest cooling agent of the stratosphere as demonstrated by this computer-modeled representation of stratospheric cooling rates:


Image from blog article, originally in E M Smith’s article


Record solar UV irradiance in the tropical Andes
Nathalie A. Cabrol, Uwe Feister, Donat-Peter Häder, Helmut Piazena, Edmond A. Grin and Andreas Klein

High elevation, thin ozone layer, and clear sky produce intense ultraviolet (UV) radiation in the tropical Andes. Recent models suggest that tropical stratospheric ozone will slightly decrease in the coming decades, potentially resulting in more UV anomalies. Data collected between 4300 and 5916 m above sea level (asl) in Bolivia show how this trend could dramatically impact surface solar irradiance. During 61 days, two Eldonet dosimeters recorded extreme UV-B irradiance equivalent to a UV index (UVI) of 43.3, which is the highest ground value ever reported. If they become more common, events of this magnitude may have societal and ecological implications, which make understanding the process leading to their generation critical. Our data show that this event and other major UV spikes were consistent with rising UV-B/UV-A ratios in the days to hours preceding the spikes, trajectories of negative ozone anomalies (NOAs), and radiative transfer modeling.

Front. Environ. Sci., 08 July 2014 | doi: 10.3389/fenvs.2014.00019