Archive for the ‘Solar physics’ Category

Last Wednesday I attended the talk by Professor Valentina Zharkova hosted by the GWPF in London. She delivered a superb lecture including news of new work improving her model by including quadrupole magnetic parameters. In the Q & A session that followed, I got the opportunity to point up the connection between her model output and Rick Salvadors.

zharkova salvador models

I got a very positive response, including an invitation to collaborate on further work. We discussed this further over dinner, when I gave her a printed copy of Rick’s 2013 PRP paper.

(more…)

.
A rapid-fire lecture on solar-planetary links, sunspots, volcanoes, ice cores, climate and a whole lot more, including a closer look at the Spörer Minimum.

CO2 is Life

Please Like, Share, Subscribe and Comment

View original post

.
.
Interesting. Another article reporting the solar gamma ray ‘mystery’ can be found here.
– – –
Research paper (pdf): Evidence for a New Component of High-Energy Solar Gamma-Ray Production

The Next Grand Minimum

Devdiscourse News Desk 29 Aug 2018, 01:18 PM

New research by US scientists has detected that the Sun is emitting a higher than expected amount of high-energy light consisting of gamma rays. But the most unusual thing is that the rays with the highest energy appear when the star is at its least active point, according to the study, which is published in the journal Physical Review Letters.

The work is the first investigation that has examined gamma rays over most of the solar cycle, a period of about 11 years during which the activity of the star increases and decreases.

The group of scientists, led by astrophysicist Tim Linden, analyzed data that NASA’s Fermi Gamma-ray space telescope collected between August 2008 and November 2017. The observations included a period of low solar activity in 2008 and 2009, a period of greatest activity in 2013 and a reduction in activity…

View original post 347 more words

I was at the Dodger game Saturday when the power went out….completely.  It was the 12th inning, with the score tied at 4-4 (Dodger Vs Padres).  This was a serious matter!

I thought I was joking when I told my friends “It’s probably caused by massive ground currents from a CME (coronal mass ejection)”.  Lo and behold, when I woke up Sunday morning, I discovered that a surprisingly significant stream of energy from an earthbound solar filament hit the ionosphere at the same time as the outage.

The following chart shows measurements of the Earth’s geomagnetic field in the time period when the power outage occurred:

glenn1

UTC is 7 hours ahead of PST, so the power outage at Dodger Stadium, which occurred in Los Angeles at 9:44 p.m., shows up on the chart on August 26th at 04:44 a.m.  That appears to be exactly when the KP Index from NOAA hit Kp = 7.0, categorized as a “Severe Storm”.

(more…)

Credit: NASA


Temporary weather effects and more. For more background, there are several extra links in the original ScienceNews article.

A year after the total solar eclipse of 2017, scientists are still pondering the mysteries of the sun.

It’s been a year since the total solar eclipse of August 21, 2017, captured millions of imaginations as the moon briefly blotted out the sun and cast a shadow that crisscrossed the United States from Oregon to South Carolina.

“It was an epic event by all measures,” NASA astrophysicist Madhulika Guhathakurta told a meeting of the American Geophysical Union in New Orleans in December. One survey reports that 88 percent of adults in the United States — some 216 million people — viewed the eclipse either directly or electronically.

(more…)

Solar flare [image credit: NASA/SDO]


Quoting from the research article’s plain language summary: ‘We find that some aspects of the space weather climate are in fact reproducible, they can be inferred from that of previous solar maxima. This may help understand the behaviour of future solar maxima.’ Solar wind variation is highlighted.

Historic space weather may help us understand what’s coming next, according to new research by the University of Warwick, says Phys.org.

Professor Sandra Chapman, from Warwick’s Centre for Fusion, Space and Astrophysics, led a project which charted the space weather in previous solar cycles across the last half century, and discovered an underlying repeatable pattern in how space weather activity changes with the solar cycle.

(more…)

The Parker solar probe is headed for space tomorrow. Best of luck to the mission team.

Solar scientist and part-time NSA operative Leif Svalgaard has produced a prediction for solar cycle 25, four years after Rick Salvador published his 86 year prediction in the swiftly censored “Pattern Recognition in Physics”.

It appears at the end of a 30 page pdf document he has published on his website. This is an interesting document, with a wealth of gayly coloured butterfly diagrams, polar field reconstructions and more. Leif self deprecatingly follows his Prediction title with (At last) not only because it comes at the end of 30 pages of preamble, but because he’s acutely aware of his method’s limitations.

svalgaard-sc25

(more…)

Our hypothesis that solar variation is affected by planetary motion, developed over the last 10 years here at the talkshop received a boost today when one of its main detractors, Anthony Watts, published an article declaring that solar cycle 24 is entering minimum.

I’ve left a comment there, something I rarely do since the debacle back in 2014 when Anthony and his sidekick Willis attacked our work and banned discussion of our solar-planetary theory. I’ll be interested to see if it passes moderation.

salvador-validation

Here’s the plot I linked. It shows that Rick Salvador’s model is spot on track over the last 5 years.

(more…)

As we’ve been warning for years on the talkshop, the incoming solar grand minimum is likely to hit world food production negatively.

Politicians and policy makers have no excuses here. They’ve been enthralled by the scientists they pay to tell them what they want to hear for years.

(more…)


New insights on the internal workings of the Sun. The lead researcher notes: “Solar Rossby waves are gigantic in size, with wavelengths comparable to the solar radius”. They have maximum amplitudes in the Sun’s equatorial regions.

A team of scientists led by the Max Planck Institute for Solar System Research (MPS) and the University of Göttingen has discovered new waves of vorticity on the Sun, reports Phys.org.

As described in today’s issue of Nature Astronomy, these Rossby waves propagate in the direction opposite to rotation, have lifetimes of several months, and maximum amplitudes at the Sun’s equator. For forty years scientists had speculated about the existence of such waves on the Sun, which should be present in every rotating fluid system.

Now, they have been unambiguously detected and characterized for the first time. The solar Rossby waves are close relatives of the Rossby waves known to occur in the Earth’s atmosphere and oceans.

(more…)

There’s a new paper coming out in Astronomy and Astrophysics from Wu, Usoskin et al that is of interest to us. It reconstructs solar activity over 9 millennia. When I get a copy of the data, I’ll compare it to Steinhilber et al’s 2012 effort.

solar-9k-usoskin

(more…)

The Sun Watcher and the Dragon 

Posted: December 16, 2017 by oldbrew in atmosphere, Measurement, research, Solar physics
Tags: ,

TSIS-1 heading for the ISS [image credit: NASA]


In these times of unusually low sunspot activity, it’s more important than ever to get the best possible data about solar irradiance, using the latest technology – and here it is.

A new solar irradiance sensor is headed for the International Space Station, NASA reports.

A SpaceX Falcon 9 rocket lifted off on December 15, 2017, from Cape Canaveral Air Force Station. The rocket carried a SpaceX Dragon laden with 4,800 pounds of research equipment, cargo, and supplies for the International Space Station.

Amidst the research equipment is the Total and Spectral Solar Irradiance Sensor (TSIS-1), a Sun-watching sensor that will measure how much solar energy reaches Earth (total solar irradiance) and how that energy is distributed across the electromagnetic spectrum (spectral solar irradiance).

The measurements are critical to understanding Earth’s energy budget, climate change, and how small variations in the Sun’s output can change the way energy circulates through Earth’s atmosphere.

(more…)


It’s not known exactly what factors govern this constant minimum, but this is an interesting finding as Phys.org reports.

Using more than a half-century of observations, Japanese astronomers have discovered that the microwaves coming from the sun at the minimums of the past five solar cycles have been the same each time, despite large differences in the maximums of the cycles.

In Japan, continuous four-frequency solar microwave observations (1, 2, 3.75 and 9.4 GHz) began in 1957 at the Toyokawa Branch of the Research Institute of Atmospherics, Nagoya University. In 1994, the telescopes were relocated to NAOJ Nobeyama Campus, where they have continued observations up to the present.

(more…)

Solar flare [credit: NASA]


Even though the current solar cycle (SC 24) is well-known for its relatively low level of sunspots, it can still produce surprisingly powerful bursts of ‘counter-intuitive’ activity, causing solar scientists to put their thinking caps on.

A series of rapid-fire solar flares is providing the first chance to test a new theory of why the sun releases its biggest outbursts when its activity is ramping down, says Science News.

Migrating bands of magnetism that meet at the sun’s equator may cause the biggest flares, even as the sun is going to sleep. A single complex sunspot called Active Region 2673 emitted seven bright flares — powerful bursts of radiation triggered by magnetic activity — from September 4 to September 10.

Four were X-class solar flares, the most intense kind.

(more…)

Sunspots [image credit: NASA]


One of the authors of the research says: “The results of our study show us that we have identified the governing parameters in our model”. Both climate and exoplanet research could benefit from the findings.

The Sun shines from the heavens, seemingly calm and unvarying. In fact, it doesn’t always shine with uniform brightness, but shows dimmings and brightenings, reports Phys.org.

Two phenomena alone are responsible for these fluctuations: the magnetic fields on the visible surface and gigantic plasma currents, bubbling up from the star’s interior.

A team headed by the Max Planck Institute for Solar System Research in Göttingen reports this result in today’s issue of Nature Astronomy. For the first time, the scientists have managed to reconstruct fluctuations in brightness on all time scales observed to date – from minutes up to decades.

(more…)


Something new for solar theorists to ponder. Of course the surface itself doesn’t have a uniform rotation speed – at the equator it rotates faster than it does at the poles. ‘The idea that the solar core could be rotating more rapidly than the surface has been considered for more than 20 years, but has never before been measured’.

The sun’s core rotates nearly four times faster than the sun’s surface, according to new findings by an international team of astronomers. Scientists had assumed the core was rotating like a merry-go-round at about the same speed as the surface, says Phys.org.

“The most likely explanation is that this core rotation is left over from the period when the sun formed, some 4.6 billion years ago,” said Roger Ulrich, a UCLA professor emeritus of astronomy, who has studied the sun’s interior for more than 40 years and co-author of the study that was published today in the journal Astronomy and Astrophysics.

“It’s a surprise, and exciting to think we might have uncovered a relic of what the sun was like when it first formed.”

(more…)

Credit: NASA


Extreme ultraviolet radiation (EUV) is perhaps an aspect of solar activity that gets less attention than it should. The authors make the interesting point in their introduction to the research article that ‘Although the total solar irradiance at Earth varies very little, the relative variance in the EUV is as large as the mean irradiance. This EUV light interacts with Earth’s thermosphere and stratosphere and may affect climate in a “top-down” process in regions such as northern Europe’.

A pair of researchers with Aberystwyth University in the U.K. has used data from NASA’s Solar Dynamics Observatory to learn more about how the sun’s corona behaves over differing stages of its 11-year cycle, reports Bob Yirka at phys.org.

In their paper published on the open access site Science Advances, Huw Morgan and Youra Taroyan describe attributes of the sun they observed over time and what they discovered about the “quiet corona” and its possible impact on us back here on Earth.

(more…)

Ilya Usoskin has kindly sent me the data for the new group sunspot number series he and his colleagues have published. I’ve done a rough and ready plot below. Excel file here in case you have problems wit the links below.

group-sunspot

Group sunspot number average value. Missing values given as zero

T. Willamo1, I. G. Usoskin2,3 and G. A. Kovaltsov4

1 Department of Physics, University of Helsinki, 00014 Helsinki, Finland
2 Space Climate Research Unit, University of Oulu, 90014 Oulu, Finland
e-mail: Ilya.Usoskin@oulu.fi
3 Sodankylä Geophysical Observatory, University of Oulu, 90014 Oulu, Finland
4 Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia

Received: 4 October 2016
Accepted: 6 March 2017

(more…)


One thing the Sun has in common with the planets is rotation. ‘Rossby waves, also known as planetary waves, are a natural phenomenon in the atmosphere and oceans of planets that largely owe their properties to rotation of the planet.’ – Wikipedia. New evidence shows these type of waves also exist on the Sun.

Our sun is a chaotic place, simmering with magnetic energy and constantly spewing out particles. Sometimes the sun releases solar flares and coronal mass ejections — huge eruptions of charged particles — which contribute to space weather and can interfere with satellites and telecommunications on Earth.

While it has long been hard to predict such events, new research has uncovered a mechanism that may help forecasting these explosions, reports ScienceDaily. The research finds a phenomenon similar to a common weather system seen on our own planet. Weather on Earth reacts to the influence of jet streams, which blow air in narrow currents around the globe. These atmospheric currents are a type of Rossby wave, movements driven by the planet’s rotation.

Using comprehensive imaging of the entire sun with data from the NASA heliophysics Solar Terrestrial Relations Observatory — STEREO — and Solar Dynamics Observatory — SDO — scientists have now found proof of Rossby waves on the sun.
(more…)