Archive for the ‘solar system dynamics’ Category

Impact [image credit: karbalion.com]


This time, unusually, the new Younger Dryas evidence is from way below the equator, which they believe shows that ‘the Younger Dryas climatic onset was an extreme global event’.

When UC Santa Barbara geology professor emeritus James Kennett and colleagues set out years ago to examine signs of a major cosmic impact that occurred toward the end of the Pleistocene epoch, little did they know just how far-reaching the projected climatic effect would be, says Phys.org.

“It’s much more extreme than I ever thought when I started this work,” Kennett noted. “The more work that has been done, the more extreme it seems.”

He’s talking about the Younger Dryas Impact Hypothesis, which postulates that a fragmented comet slammed into the Earth close to 12,800 years ago, causing rapid climatic changes, megafaunal extinctions, sudden human population decrease and cultural shifts and widespread wildfires (biomass burning).

(more…)

Quiet sun [image credit: NASA]


In which we are informed that the Maunder Minimum was ‘an incident’, warming is due to ‘climate change’, and solar cycle 25 may not start until 2020.

Some fear that we could be heading to another Little Ice Age, but scientists say that’s unlikely, reports CBC News.

The sun is quiet … very quiet. In February, for the first time since August 2008, the sun went an entire month without any sunspots.

What does this mean for Earth?

(more…)

.
.
Theorists take another look at the mechanisms that may or may not be important regulators of Earth’s ice ages.

Climate Etc.

by Donald Rapp, Ralf Ellis and Clive Best

A review of the relationship between the solar input to high latitudes and the global ice volume over the past 2.7 million years.

View original post 4,521 more words


Planetary theory lives on, even if it now has to nod towards trace gases in the atmosphere to be in fashion with the times.

Scientists have long posited that periodic swings in Earth’s climate are driven by cyclic changes in the distribution of sunlight reaching our surface, says Phys.org.

This is due to cyclic changes in how our planet spins on its axis, the ellipticity of its orbit, and its orientation toward the sun—overlapping cycles caused by subtle gravitational interplays with other planets, as the bodies whirl around the sun and by each other like gyrating hula-hoops.

But planetary paths change over time, and that can change the cycles’ lengths. This has made it challenging for scientists to untangle what drove many ancient climate shifts.

(more…)

.
.
What effects might this have on so-called ‘climate change’? The next few years could be interesting as lower solar activity displaces the higher activity of the 1990s and early 2000s.

Spaceweather.com

Feb. 21, 2019:Cosmic rays in the stratosphere are intensifying for the 4th year in a row. This finding comes from a campaign of almost weekly high-altitude balloon launches conducted by the students of Earth to Sky Calculus. Since March 2015, there has been a ~13% increase in X-rays and gamma-rays over central California, where the students have launched hundreds of balloons.

neutronsandxrays2

The grey points in the graph are Earth to Sky balloon data. Overlaid on that time series is a record of neutron monitor data from the Sodankyla Geophysical Observatory in Oulu, Finland. The correlation between the two data sets is impressive, especially considering their wide geographic separation and differing methodologies. Neutron monitors have long been considered a “gold standard” for monitoring cosmic rays on Earth. This shows that our student-built balloons are gathering data of similar quality.

Why are cosmic rays increasing? The short answer is “Solar…

View original post 154 more words

Active solar regions
[image credit: NASA/Goddard]


Very interesting, bearing in mind that magnetism is caused by moving electric charges. The corona has frequencies.

New research undertaken at Northumbria University, Newcastle shows that the sun’s magnetic waves behave differently than currently believed, reports Phys.org.

Their findings have been reported in Nature Astronomy.

After examining data gathered over a 10-year period, the team from Northumbria’s Department of Mathematics, Physics and Electrical Engineering found that magnetic waves in the sun’s corona – its outermost layer of atmosphere – react to sound waves escaping from the inside of the sun.

(more…)

Kepler’s trigon – the orientation of consecutive Jupiter-Saturn synodic periods, showing the repeating triangular shape (trigon).


This of course follows on from the very recent Part 1 of the model. Since Jupiter and Saturn are the dominant planets in our solar system, we can speculate that they may have a significant effect on the obliquity of smaller bodies. Or they may not – no-one knows, but we can look at possible evidence.
– – –
Precession of the Jupiter-Saturn conjunction (J-S) was worked out by Kepler centuries ago, as shown in his diagram to the right.

‘As successive great conjunctions occur nearly 120° apart, their appearances form a triangular pattern. In a series every fourth conjunction returns after some 60 years in the vicinity of the first. These returns are observed to be shifted by some 7–8°’ – Wikipedia.

(more…)

Earth’s Axial Tilt, or Obliquity [Credit: Wikipedia]


First let’s get the approximate target numbers for the model.

‘The inclination of Earth’s orbit varies with respect to the solar system’s invariant plane with a period of roughly 71000 years.
. . .
Taken in conjunction with the 26000-year spin-axis precession, the 71000-year orbit precession causes a 41000-year oscillation in the tilt of the earth’s axis, about plus or minus 1.3 degrees from its average value of 23.3 degrees. This number is not absolutely stable – it depends on the combined positions of all the planets through time.’

Astronomy: precession of Earth (Washington State University)
– – –
Origin of the 100 kyr Glacial Cycle: eccentricity or orbital inclination?

‘Spectral analysis of climate data shows a strong narrow peak with period ~ 100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth’s orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data.’

Richard A. Muller — University of California, Berkeley and
Gordon J. MacDonald — University of California, San Diego

(more…)

.
.
A look at possible implications of current and continuing low solar activity.

The Next Grand Minimum

The is a very interesting 40-minute video presentation by Nir Shaviv on the solar-climate connection and cosmic rays.

Shaviv first presents the evidence that the sun affects climate before explaining the cosmic ray ideas.

https://www.youtube.com/watch?v=p9gjU1T4XL4

View original post

Confusing Diabatic and Adiabatic Processes within the Climate Theory:

A Reply to Dr. Roy Spencer’s Blog Article “Giving Credit to Willis Eschenbach

Ned Nikolov, Ph.D.
Physical Scientist

In a recent blog post, Dr. Roy Spencer at the University of Alabama at Huntsville attempted to criticize and dismiss the importance of our recent discovery about the physical nature of the atmospheric “Greenhouse effect” (Nikolov & Zeller 2017). I normally do not reply to blog articles, but this one reflects a fundamental generic confusion in the current climate theory that is worthwhile addressing for readership clarification. In his blog, Dr. Spencer demonstrated several misconceptions about our work that could be due to either not having read/understood our papers or perhaps an incomplete grasp of thermodynamics. The fact that Dr. Spencer cites a newspaper article about our research instead of the actual published paper may indicate a lack of familiarity with the technical details of our study. These are some key misrepresentations that I spotted in his article:    

1. Dr. Spencer incorrectly referred to our main finding as a “theory” when, in fact, it is a discovery based on vetted NASA data extracted from numerous published studies. This empirical pressure-temperature (P-T) function emerged from reported NASA measurements in the process of Dimensional Analysis, which is an objective technique employed in classical physics to derive/extract physically meaningful relationships from observed data.

(more…)

[image credit: beforeitsnews.com]

London 10 January: A new report from the Global Warming Policy Foundation finds that UK consumers are paying far too much for the emissions reductions delivered by renewable energy.

The report, by Dr Capell Aris, is the result of extensive energy system modelling, and reports the costs, greenhouse gas emissions and grid security delivered by the current grid and by a series of counterfactual energy systems.  As Dr Aris explains:

“The dash for gas of the 1990s delivered lower carbon dioxide emissions and lower costs. If we had simply continued, we could now be enjoying electricity prices 30-40% lower than today, with similar carbon dioxide emissions, and vastly better grid security. Consumers are grossly overpaying for a very unreliable system.”

(more…)

Does it snow on Mars?

Posted: December 30, 2018 by oldbrew in atmosphere, Clouds, solar system dynamics
Tags: ,

Clouds on Mars [image credit: NASA]


H/T Discover Magazine

This wasn’t the first question that came to mind when I photographed these clouds, says Tom Yulsman @ ImaGeo.

But the beautiful phenomenon I witnessed eventually led me to it.
– – –
Mars is certainly cold. With temperatures that can plunge to more than negative 100 degrees Celsius, it’s bloody frigid!

But as cold as it might get, does it snow on Mars?

(more…)

Jupiter dominates the solar system


Scientists predict the next parting of Jupiter’s veil of clouds for 2019. We like ‘regular pattern’ planetary mysteries.

New research finds a pattern of unique events at Jupiter’s equator, reports ScienceDaily.

A regular pattern of unusual meteorological events at Jupiter’s equator has been identified by planetary scientists at the University of Leicester.

Jupiter’s striped appearance of light zones and dark brown belts provides breathtaking views through amateur and professional telescopes alike. But Jupiter’s stripes can change and shift over poorly-understood timescales, sometimes expanding and contracting, sometimes fading away entirely.

(more…)

The orbit of 2014 MU69 with the path of New Horizons [credit: NASA@Wikipedia]


“Ultima Thule” (2014 MU69) means “beyond the borders of the known world.” It takes nearly 300 years to orbit the Sun. Scientists ‘have no idea what to expect’.

After several weeks of sensitive searches for rings, small moons and other potential hazards around 2014 MU69, a Kuiper belt object nicknamed Ultima Thule, the dozen-member New Horizons hazard watch team gave the ‘all clear’ for the spacecraft to remain on a path that takes it about 2,200 miles (3,500 km) from Ultima Thule, instead of a hazard-avoiding detour that would have pushed it three times farther out, reports Sci-News.

“New Horizons is now targeted for the optimal flyby, over three times closer than we flew to Pluto. Ultima, here we come,” said New Horizons principal investigator Dr. Alan Stern, a researcher at Southwest Research Institute.

New Horizons will make its historic close approach to Ultima Thule at 12:33 a.m. EST on January 1, 2019.

(more…)

See a passing comet this Sunday

Posted: December 15, 2018 by oldbrew in Astronomy, News, solar system dynamics
Tags:

Comet 46P/Wirtanen [image credit: NASA]


The comet can be found near the Pleiades star cluster, conditions permitting.

On Sunday, Dec. 16, the comet known as 46P/Wirtanen will make one of the 10 closest comet flybys of Earth in 70 years, and you may even be able to see it without a telescope, says Phys.org.

Although the approach will be a distant 7.1 million miles (11.4 million kilometers, or 30 lunar distances) from Earth, it’s still a fairly rare opportunity.

“This will be the closest comet Wirtanen has come to Earth for centuries and the closest it will come to Earth for centuries,” said Paul Chodas, manager of the Center for Near-Earth Object Studies at NASA’s Jet Propulsion Laboratory in Pasadena, California.

(more…)

.
.
How ‘grand’ the predicted solar minimum could be is a popular subject for speculation. More analysis here.

The Next Grand Minimum

By Stephanie Osborn

The Osborn post is a lengthy explanation of Dr. Zharkova’s model, model updates and predictions, with some additional example of how the ‘barycentric wobble’ influences the earth’s temperature. For readers who found Dr. Zharkova’s GWPF Presentation confusing, this article will help with the understanding of her model’s significance, and the output is worth considering. Osborn’s bio is HERE.

Osborn’s evaluation of Zharkova’s model:

Zharkova’s model is supported not only by sunspot numbers and solar activity, but by other solar-studies fields: magnetohydrodynamics and helioseismology. In fact, the resulting data plots from these fields are so close to Zharkova’s model predictions, that the model could as well be based on either of those. So this model is not functioning in isolation from related science, but is in fact harmonizing quite well with it.

The Dalton extended minimum (1790-1830) is evidently an example of a Gleissberg minimum, while the…

View original post 682 more words


This was a surprise, but whatever the interpretation, the numbers speak for themselves.

‘Richard Christopher Carrington determined the solar rotation rate from low latitude sunspots in the 1850s and arrived at 25.38 days for the sidereal rotation period. Sidereal rotation is measured relative to the stars, but because the Earth is orbiting the Sun, we see this period as 27.2753 days.’ – Wikipedia.

What happens if we relate this period to the lunar draconic year?

(more…)

Field lines of the bar magnet [image credit: brilliant.org]


A magnetic field line is more a trajectory than an actual entity, despite being discussed as though it really exists. But they are ‘found’ in space just as they are in bar magnets.

New research describes striking similarity of laboratory research findings with observations of the four-satellite Magnetospheric Multiscale Mission that studies magnetic reconnection in space, reports ScienceDaily.

As on Earth, so in space.

A four-satellite mission that is studying magnetic reconnection — the breaking apart and explosive reconnection of the magnetic field lines in plasma that occurs throughout the universe — has found key aspects of the process in space to be strikingly similar to those found in experiments at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL).

(more…)

.
.
It has been billed as The Comet of The Year.

Spaceweather.com

Nov. 26, 2018: Small but hyperactive Comet 46P/Wirtanen is approaching Earth and could soon become visible to the naked eye. On Dec. 16th, the kilometer-wide ball of dirty ice will be less than 11.5 million km away–making it one of the 10 closest-approaching comets of the Space Age. It already looks magnificent through amateur telescopes. On Nov. 26th, Gerald Rhemann took this picture using a 12-inch reflector in Farm Tivoli, Namibia:

“The comet is currently gliding through the southern constellation Fornax,” says Rhemann. “If you look carefully at the image, you can see galaxy NGC 922 near the comet’s head, and another galaxy ESO 479-2 on the left.”

Rhemann says that the comet’s emerald green atmosphere is 50 arcminutes wide. In other words–almost twice as wide as a full Moon. Its apparent diameter could double in the weeks ahead as the comet comes even closer. Because Wirtanen’s brightness is spread…

View original post 168 more words


While this may all seem a bit vague, it looks like a step in the right direction.

Historic space weather could help researchers better predict future events and atmospheric cycles, a new study in Space Weather reports.

This finding comes from scientists at the University of Warwick, who tracked space weather in solar cycles for the last half century, reports The Space Reporter.

That then revealed a repeatable pattern in the way space weather activity alters over each solar cycle.

(more…)