Posts Tagged ‘barycenter’

1) Introduction

The ancient Greeks speculated about their Kosmos in terms recognisable as scientific today. Pre-Socratic thinker Thales believed water was the fundamental substance from which all else proceeded. Demokritus first proposed all matter was constucted of irreducably small particles called atoms. Today we know that the simplest expression of matter, the Hydrogen atom, is readily oxidised to form water, releasing a large dose of energy in the process. Hydrogen permeates the universe, in it’s preferred state as a hydrogen molecule, it is invisible to our telescopes and our other means of  spectral detection.

Other Greek thinkers considered the motion of the heavenly bodies, planets, stars, comets and our Sun. The first to propose that the Earth moved round the Sun rather than believing in an Earth centred Kosmos was Aristarchus of Samos. Using geometrical  mathematics, he calculated the relative sizes of the Sun and Moon, and reasoned that because the Sun was the biggest body in the Kosmos, and the only self luminous body, it must be at the centre of the part of the  Greek Kosmos we now call the solar system.

But science makes many twists and turns on the path to knowledge, and the needs of navigators and astronomers for a quantifiable and predictive calculation system led to the adoption of the Earth centred system of Ptolemy, with it’s unphysical epicycles grafted into the theory to explain the apparent retrograde motion of planets at various times. This view was to dominate late classical and medieval thought for 1300 years due to the suppression of other ideas by the gatekeepers of knowledge. A theme we will be forced to return to later.

Eventually, Nikolaus Copernicus restored the Sun to it’s rightful place and his work was championed by Galileo Galilei, despite being placed under house arrest and having his telescope confiscated for a time by the guardians of orthodoxy. Galileo also methodically counted sunspots and we still use his observations as part of the sunspot record. Building on the work of  Copernicus, Galileo, and Tycho Brahe, German born Johannes Kepler discovered that the proportions of the orbital distances and the rates of motion of the planets conformed to simple geometrical laws which revealed a harmony and resonance in the solar system as a whole.

Subsequently,  Isaac Newton quantified the concept of gravity, and derived laws of motion describing relationships between mass,  momentum and velocity which we still use today. Newton showed that the sun is engaged in continual motion around the centre of mass of the solar system (i.e. the barycentre or SSB) as a result of the gravitational force exerted by the planets, especially Jupiter and Saturn. He came to this conclusion analytically (not by observation) by working through the consequences of his law of gravitation. His cosmological theory of an isometric universe was superceded by Einstein‘s theory of General Relativity with its application to the concept of curved space-time.

“In 1801, the Astronomer Royal in Britain, Sir William Herschel, discussed the nature of sunspots, their variability, their effect on climate, and the position of the planets as possible causative forces. Although this work was published by the Royal Society, it was “ahead of its time”. Some century-and-a-half later, there was much more information, but not much more light.” -Rhodes Fairbridge-

The field of Solar Physics developed throughout the period, but the sun’s remoteness, and it’s enigmatic variation in activity made hypotheses of it’s nature difficult to validate until the recent development of sophisticated equipment and techniques to measure it’s magnetic field, surface activity and periodic parameters. The currently dominant Babcock-Leighton Dynamo theory of the way the sun generates it’s cyclic activity has seen little competition, despite its difficulties and lacunae.

2) Enter Paul José

In April 1965 Paul D. José, a scientist at the office of Aerospace Research  at Holloway Air Force base in New Mexico published a short paper in The Astronomical Journal (vol.70 No.3) entitled: Sun’s motion and sunspots.

The paper included an intriguing diagram reproduced in part here:

Jose 1965 Diagram of solar motion

The importance of the diagram and the rest of José’s paper will form the first part of the next installment.

To be continued…

A lot of people are puzzled by the current El Niño. Global average Sea Surface Temperature (SST) has been high, but we don’t seem to have the balmy winters of ten years ago. My simple model explains why.

Temperature reconstructed from solar and planetary motion

The graph compares sea surface temperature HADsst2GL (red curve), with curves generated from solar and planetary data.

The black curve uses a combination of Length of Day (LOD) data and sunspot number data. The monthly sunspot number values are added cumulatively as positive or negative values departing from my estimated ocean equilibrium value of ~40SSN. The LOD values are added via a simple best fit scaling technique using a hghly sensitive piece of equipment called tallbloke’s eyeball.

The yellow curve uses the sunspot numbers again, but instead of LOD data, I use the fact that LOD variation approximately correlates with variation in the distance of the solar system centre of mass in the ‘z’-axis from the solar equatorial plane (SSB-z) and substitute in those values instead as a scaled LOD proxy.

The green curve goes the whole hog. Since the SSB-z data can also be used as a proxy for sunspot numbers (on a different smoothing and lag value to the LOD proxy), it is used both for sunspot proxy and LOD proxy. This enables me to reconstruct past and predict future planetary surface temperatures, to a limited degree of accuracy.

There are a couple of obvious problems. The method does not capture individual El Niño events well. Nor does it predict individual big volcanos, although the volcanic explosivity index does correlate well with the motion of the planets, as I will show in a future post. One further problem is that the technique does not capture the collapse in solar activity which seems to occur when Uranus and Neptune are in conjunction, as at 1800-1840 during the Dalton Minimum, and during the Maunder minimum in the 1630’s . Whether we will see a similar deep solar minimum now following the conjunction of these two planets in 1993 remains to be seen.

The large departure of my reconstruction from the SST data around the WWII years is I believe due to well known issues with the switchover from bucket and thermometer measurements to ship engine cooling intake sensors on military vessels.

So, the basic premise of my model, is that a cumulative count of sunspots above and below the ocean equilibrium value I have determined will mimic the retention and release of energy from the ocean. At the same time, multi-decadal changes in Earth’s length of day which also correlate with the timings and sign of the major oceanic periodicities (PDO, AMO) add detail to the picture.

The high SSN of the late C20th means according to my model, that a lot of heat got absorbed into the ocean. Now the sunspot numbers are falling, that heat is being released again by El Niño’s and the temperature is dropping because that heat is escaping to space and not being replaced by solar energy into the oceans at the rate it was in the ’80’s and ’90’s. I have done calcs on this to support my theory and I will present them soon.

Comments please.

Here’s a prediction graph I produced a little while ago which seems to be more or less on course:

ap-prediction

ap-prediction

It uses the fact that changes in Earth’s length of day seem to precede changes in solar magnetism and sunspot production by several years. The yellow curve was generated by combining Sunspot data with LOD data to create a prediction for Ap out to 2015. The recent burst of sunspot activity has arrived on cue.

Here’s another graph which shows a possible correlation between sunspot activity averaged over the length of the solar cycle, and motion of the solar system’s centre of mass relative to the solar equatorial plane averaged over two Jupiter orbital periods:

Sunspots graphed against SSBz-solar equator

What caused the collapse in solar activity at the start of the 1800’s known as the Dalton minimum? Could it be the conjunction of Uranus and Neptune which seems to accompany each of the grand minima? Does that mean we are due another one now?  I’ll investigate that in another post soon.

Why does the average sunspot number fall when the average mass of the planets is heading south? Speculatively,  could it be that the ‘lensing’ of an electro-magnetic effect emanating from the galactic centre diminishes when the planets are ‘on the wrong side of the sun’?

Answers on a postcard, or post your thoughts below.

Our friend Vukevic called by and gave me a pointer to a links page at his site which provides a resource for those interested in studying planetary, solar and magnetic phenomena.

http://www.vukcevic.co.uk/GandF.htm

Here’s an example demonstrating the match between the sunspot number and Vuk’s planetary motion derived formulas:

Hopefully, Vuk will call back to give us some further info on his research.

Well, this guy has beaten the rest of us to the scoop. A small number of researchers including Geoff Sharp, Gerry Pease, Ian Wilson, Ray Tomes, Ulric Lyons, Gray Stevens, Milivoje Vukevic, Paul Vaughan and myself have been working away on the motion of the planets with respect to the solar system barycentre and various  interesting orbital periodicities and resonances. We’ve all found remarkable correlations between various phenomena which hint at a planetary effect on the suns behaviour.

Now Petr Semi Semerad has pulled a lot of things together and discovered the key to the holy grail: the resonances matching the sunspot cycle. But more than that, he has filled the cup to overflowing with a rare vintage of observations which will be keeping us all busy for a long time to come.

Earth - Venus - Jupiter cycle

Earth - Venus - Jupiter cycle

Figure 88 -Earth-Venus-Jupiter cycle compared to Signed Sunspot counts
Series in the chart on fig. 88 are:
– Orange – Real data – Signed sunspot counts (every other cycle is negative or positive)
All other series are computed (from ephemerides), at times of Earth-Venus opposition only:
– Bold green (which matches the Sunspot frequency) – Half of angle between Jupiter and Earth (or to EVB, with center in Sun) during Earth-Venus oppositions, multiplied (scaled vertically) by sinus of Uranus-Neptune angle at these times (to match cycle damping arround 1820 and 1910 of the Gleissberg cycle…The Uranus-Neptune cycle of 178.5 years seems to match the length of twice the Gleissberg cycle, observed in the Sunspot data.)
The damping arround 1650 (little ice age) and unexpectedly large values arround 1990 are due to another influences (matches cycle of overall angular momentum change, see relevant chapter)
– Purple series :  Uranus/Neptune cycle. To avoid a sinus-like symmetric appearance, the angle between those
planets is multiplied by their relative velocity…
– Pink background serie – Tidal angle between Mercury and Jupiter at times of Earth-Venus oppositions.
– Outer blue serie – with connected maximums to show its envelope (see also fig. 89) – Tidal angle between Earth-Venus barycenter and Jupiter, with added or subtracted (with less importance) the Tidal angle between Jupiter and Mercury.
– Bold blue dots at X axis – historical record of “severe winters” in central Europe.

Earth-Moon system angular momentum relative to sunspot cycle

Earth-Moon system angular momentum relative to sunspot cycle

http://semi.gurroa.cz/Astro/Orbital_Resonance_and_Solar_Cycles.pdf
Download, read and enjoy!

h/t to French-Canadian blogger Simon Filiatrault

Here’s another interesting correlation. The Position of the north magnetic pole has been shifting rapidly over the last several decades. The rate of change of it’s declination correlates with the variations in Earth’s length of day and the motion of the sun relative to the centre of mass of the solar system which we discussed in my first post.

North Pole rate of change of declination vs LOD vs SSBz

North Pole rate of change of declination vs LOD vs SSBz

More interesting information on Earth’s magnetism and it’s relationship with the sun here: http://www.appinsys.com/GlobalWarming/EarthMagneticField.htm

If the changes in Length of Day are related to changes in the circulation of currents of molten material beneath the Earth’s crust, we could speculate that magnetic  iron ores are shifting their predominant accumulations and this affects the location of the magnetic north pole.

This graph shows the relationship between the motion of the planets, the length of Earth’s day, and the changes in global temperature.

SSB z, LOD, Temperature

Graph of the SSB-solar equatorial distance in the z axis against changes in length of day and global temperature.

Click graph for larger image

The Red curve shows HADcruV3 global temperature. I’ve detrended this to something more reasonable than the treasonable nonsense Phil Jones has left us with.

The Green Curve is the distance between the solar system’s centre of mass and the solar equatorial plane in the vertical ‘z’ axis. This distance is determined by the changing disposition of the planets in the solar system over time. Extra info added: The data is smoothed over 24 years (Two Jupiter orbits) and retarded 30 years. This is indicative of the inertia involved in the LOD variation lagging behind the combined effect of the gas giants motion.

The Blue curve shows changes in the Earth’s length of day in milliseconds. This has been detrended. This has been done to separate the effect of planetary motion from longer term cylicities which may affect LOD.

So, the multi-billion dollar question is:

What underlying physical principles connect these three phenomena?
Gravity? Magnetism? Resonant feedback between celestial bodies?

Answers on a postcard, or just post below with your thoughts.