Posts Tagged ‘exoplanets’

Poster from the NASA Exoplanets Exploration Program’s Exoplanet Travel Bureau [credit: NASA/JPL-CalTech]


Before we start – ‘Pulsar planets are planets that are found orbiting pulsars, or rapidly rotating neutron stars.’

Wikipedia tells us:
‘PSR B1257+12, previously designated PSR 1257+12, […] is a pulsar located 2,300 light-years from the Sun in the constellation of Virgo. It is also named Lich, after a powerful, fictional undead creature of the same name.

The pulsar has a planetary system with three known planets, named “Draugr” (PSR B1257+12 b or PSR B1257+12 A), “Poltergeist” (PSR B1257+12 c, or PSR B1257+12 B) and “Phobetor” (PSR B1257+12 d, or PSR B1257+12 C), respectively.

They were both the first extrasolar planets and the first pulsar planets to be discovered; B and C in 1992 and A in 1994.

A is the lowest-mass planet yet discovered by any observational technique, with somewhat less than twice the mass of Earth’s moon.’

(more…)

Artist’s impression of the Kepler telescope [credit: Wikipedia]


So said researchers in their 2015 study which had that title. Then a third planet was seen.

In the abstract they say:

Methods. Our search through two separate pipelines led to the independent discovery of K2-19b and c, a two-planet system of Neptune-sized objects (4.2 and 7.2 R⊕), orbiting a K dwarf extremely close to the 3:2 mean motion resonance. The two planets each show transits, sometimes simultaneously owing to their proximity to resonance and the alignment of conjunctions.

(more…)


There doesn’t seem to be any online discussion of this planetary system, first seen in 2014 – but it turns out be interesting anyway.

This is a Lucas series set-up, the planets being b, c, and d in order of proximity to the star.

Starting with the orbits:
19 b = 203.006394 days
10 c = 203.03005
7 d = 203.1565
(data: exoplanet.eu)

(more…)


In 2011, astronomers were saying:
“We’ve crossed a threshold: For the first time, we’ve been able to detect planets smaller than the Earth around another star.”

The planets in question were Kepler-20 e and Kepler-20 f.

In the end six planets were detected: b,e,c,f,d, and g (in order of proximity to their star). Orbit periods range from about 9.38 to 63.55 days, all the planets being closer to the star than Mercury is to the Sun.

A NASA article had the title: Kepler-20, An Unusual Planetary System — referring to the alternate large/small sizes of the planets.

(more…)

The Kepler-42 system as compared to the Jovian system [credit: NASA/JPL-Caltech]

The headline was NASA’s joke about both the size and the short orbit periods (all less than two days) of the three planets in the Kepler-42 system.

The discovery of this system dates back to 2012, but there don’t seem to be any numbers on resonant periods, so we’ll supply some now.

Wikipedia says:
‘Kepler-42, formerly known as KOI-961, is a red dwarf located in the constellation Cygnus and approximately 131 light years from the Sun. It has three known extrasolar planets, all of which are smaller than Earth in radius, and likely also in mass.’

‘On 10 January 2012, using the Kepler Space Telescope three transiting planets were discovered in orbit around Kepler-42. These planets’ radii range from approximately those of Mars to Venus. The Kepler-42 system is only the second known system containing planets of Earth’s radius or smaller (the first was the Kepler-20 system). These planets’ orbits are also compact, making the system (whose host star itself has a radius comparable to those of some hot Jupiters) resemble the moon systems of giant planets such as Jupiter or Saturn more than it does the Solar System.’

The three planets in order of distance from their star (nearest first) are c,b and d. They all have very short orbit periods ranging from under half a day to less than two days, and the star has only 13% of the power of our Sun.

(more…)

Pairs or multiple systems of stars which orbit their common center of mass. If we can measure and understand their orbital motion, we can estimate the stellar masses.


Relatively nearby, that is…

‘Upsilon Andromedae is located fairly close to the Solar System… (44 light years). Upsilon Andromedae A has an apparent magnitude of +4.09, making it visible to the naked eye even under moderately light-polluted skies, about 10 degrees east of the Andromeda Galaxy.’ – Wikipedia

The larger of the binary stars is ups_And A, which has 4 planets orbiting it: b,c,d and e.

The information on this star system was recently updated, so let’s have a look.

(more…)

Credits: NASA’s Goddard Space Flight Center/Chris Smith


Following the report we analyse the orbital data for evidence of resonances.

A planet discovered by NASA’s TESS has pointed the way to additional worlds orbiting the same star, one of which is located in the star’s habitable zone, reports SciTechDaily.

If made of rock, this planet may be around twice Earth’s size.

The new worlds orbit a star named GJ 357, an M-type dwarf about one-third the Sun’s mass and size and about 40% cooler that our star. The system is located 31 light-years away in the constellation Hydra.

In February, TESS cameras caught the star dimming slightly every 3.9 days, revealing the presence of a transiting exoplanet — a world beyond our solar system — that passes across the face of its star during every orbit and briefly dims the star’s light.

(more…)

Moons of Pluto


This one may have slipped through the net, so to speak. The link to Pluto is explained below.

Star HD 40307 has six planets orbiting between 7 and 198 days, but here the focus will be on the outer three: e, f and g. These were reported in 2012 (whereas b, c, and d were found in 2008).

However, it seems the resonances described below have been overlooked, if lack of related internet search results can be relied on.

(more…)

Credit: NASA’s Goddard Space Flight Center / Scott Wiessinger


Quoting from the abstract of the study in Nature Astronomy:
‘The planets orbit close to a mean-motion resonant chain, with periods (3.36 days, 5.66 days and 11.38 days, respectively) near ratios of small integers (5:3 and 2:1).’

One of the astronomers said: “For TOI-270, these planets line up like pearls on a string. That’s a very interesting thing because it lets us study their dynamical behavior. And you can almost expect, if there are more planets, the next one would be somewhere further out, at another integer ratio.”

“There is a good possibility that the system hosts other planets, further out from planet d, that might well lie within the habitable zone. Planet d, with an 11-day orbit, is about 10 million kilometers out from the star.”

In fact the distance-to-star ratios of the planets (named b,c and d) are very similar:
b:c = 1:1.542 and c:d = 1:1.553 (for comparison Earth:Mars is 1:1.524).

NASA’s Transiting Exoplanet Survey Satellite, or TESS, has discovered three new planets that are among the smallest, nearest exoplanets known to date, reports Tech Explorist.

The planets circle a star only 73 light-years away and incorporate a small, rough super-Earth and two sub-Neptunes — planets about a large portion of the size of our own icy giant.

The sub-Neptune farthest out from the star seems, by all accounts, to be inside a temperate zone, implying that the highest point of the planet’s atmosphere is inside a temperature extend that could support a few types of life.

(more…)

Credit: NASA’s Goddard Space Flight Center


First the report, then a brief Talkshop analysis.

NASA’s Transiting Exoplanet Survey Satellite (TESS) has discovered a world between the sizes of Mars and Earth orbiting a bright, cool, nearby star, reports MessageToEagle.com.

The planet, called L 98-59b, marks the tiniest discovered by TESS to date.

Two other worlds orbit the same star.

(more…)

Kepler Space Telescope [credit: NASA]


Star Kepler-102 has five known planets, lettered b,c,d,e,f. These all have short-period orbits between 5 and 28 days. Going directly to the orbit period numbers we find:
345 b = 1824.0012 d
258 c = 1824.4263 d
177 d = 1825.1709 d
113 e = 1824.4629 d
(for comparison: about 1-2 days short of 5 Earth years)

For the purposes of this post planet f (the furthest of the five from its star) is excluded, except to say that in terms of conjunctions 8 e-f = 11 d-e. Now let’s look for some resonances of the inner four planets.

(more…)

Kepler-47 system [Image Credit: NASA/JPL Caltech/T. Pyle]


Astronomers have discovered a third planet in the Kepler-47 system, securing the system’s title as the most interesting of the binary-star worlds, says NASA’s Exoplanet Exploration team.

Using data from NASA’s Kepler space telescope, a team of researchers, led by astronomers at San Diego State University, detected the new Neptune-to-Saturn-size planet orbiting between two previously known planets.

With its three planets orbiting two suns, Kepler-47 is the only known multi-planet circumbinary system. Circumbinary planets are those that orbit two stars.

Continued here.
– – –
Now at the Talkshop let’s take a quick look at the data.

(more…)

Why Phi? – the Kepler-47 circumbinary system

Posted: April 16, 2019 by oldbrew in Astrophysics, News, Phi
Tags: ,

Kepler Space Telescope [credit: NASA]


A headline at Phys.org today reads:
‘Astronomers discover third planet in the Kepler-47 circumbinary system’

The report starts:
‘Astronomers have discovered a third planet in the Kepler-47 system, securing the system’s title as the most interesting of the binary-star worlds. Using data from NASA’s Kepler space telescope, a team of researchers, led by astronomers at San Diego State University, detected the new Neptune-to-Saturn-size planet orbiting between two previously known planets.

With its three planets orbiting two suns, Kepler-47 is the only known multi-planet circumbinary system. Circumbinary planets are those that orbit two stars.’

In this system the two stars orbit each other about every 7.45 days.

What can the latest information tell us about these planets, including newly discovered planet ‘d’?

(more…)

Orbital (top line) and synodic relationships of Kepler-107, plus cross-checks

The system has four planets: b,c,d, and e.

The chart to the right is a model of the close orbital relationships of these four recently announced short-period (from 3.18 to 14.75 days) exoplanets.

It can be broken down like this:
b:c = 20:13
c:d = 13:8
d:e = 24:13 (= 8:13 ratio, *3)
b:d = 5:2
c:e = 3:1
(1,2,3,5,8, and 13 are Fibonacci numbers)
(more…)

An artist’s image of a hot-Jupiter exoplanet [credit: NASA]


But they seem to have something in common that scientists were not expecting: their nightside temperature.

New research shows how the nightside of all hot Jupiters is covered in clouds, reports Discover Magazine.

Cloudy Hot Jupiters

“Hot Jupiters” exoplanets that resemble our own Jupiter, except for being, well, hot, have another side to them.

We mean this literally: The planets usually don’t rotate [see Tidal Locking note below], so one side is always facing their star, and the other remains in permanent night.

A new study is suggesting that these night sides probably all look the same, no matter where you go in the universe.

(more…)

Three of Saturn’s moons — Tethys, Enceladus and Mimas — as seen from NASA’s Cassini spacecraft [image credit: NASA/JPL]


This is a comparison of the orbital patterns of Saturn’s four inner moons with the four exoplanets of the Kepler-223 system. Similarities pose interesting questions for planetary theorists.

The first four of Saturn’s seven major moons – known as the inner large moons – are Mimas, Enceladus, Tethys and Dione (Mi,En,Te and Di).

The star Kepler-223 has four known planets:
b, c, d, and e.

When comparing their orbital periods, there are obvious resonances (% accuracy shown):
Saturn: 2 Mi = 1 Te (> 99.84%) and 2 En = 1 Di (> 99.87%)
K-223: 2 c = 1 e (>99.87%) and 2 b = 1 d (> 99.86%)

(more…)

Top row: artist concepts of the seven planets of TRAPPIST-1 with their orbital periods, distances from their star, radii, masses, densities and surface gravity as compared to those of Earth.
[Image credit: NASA/JPL-CALTECH]


Talkshop analysis of some of the data follows this brief report from Astrobiology at NASA.

A team of researchers has provided new information about putative planets in the outer regions of the TRAPPIST-1 system. Currently, seven transiting planets have been identified in orbit around the ultra cool red dwarf star. The scientists determined the lower bounds on the orbital distance and inclination (within a range of masses) of planets that could be beyond the seven inner planets.

(more…)

Exoplanet – NASA impression


YZ Ceti is a recently discovered star with three known planets (b,c and d) orbiting very close to it. Although some types of mean motion resonance, or near resonance, are quite common e.g. 2:1 or 3:2 conjunction ratios, this one is a bit different.

The orbit periods in days are:
YZ Ceti b = 1.96876 d
YZ Ceti c = 3.06008 d
YZ Ceti d = 4.65627 d

This gives these conjunction periods:
c-d = 8.9266052 d
b-c = 5.5204368 d
b-d = 3.4109931 d
(Note the first two digits on each line.)

Nearest matching period:
34 c-d = 303.50457 d
55 b-c = 303.62403 d
89 b-d = 303.57838 d

34,55 and 89 are Fibonacci numbers.
Therefore the conjunction ratios are linked to the golden ratio (Phi).

Phi = 1.618034
(c-d) / (b-c) = 1.6170106
(b-c) / (b-d) = 1.618425

Data source: exoplanets.eu

K2-138 could even have more than five planets. [image credit: NASA/JPL-Caltech]


And it’s a good one. The abstract says: ‘The periods of the five planets are 2.35, 3.56, 5.40, 8.26, and 12.76 days, forming an unbroken chain of near 3:2 resonances.’

The Exoplanet Explorers project has led to the first discovery of a multi-planet system solely through crowdsourcing efforts, as Futurism reports.

Through a project called Exoplanet Explorers, a band of citizen scientists has discovered K2-138, a far-off planetary system that houses least five exoplanets.

This is the first time that a multi-planet system has been discovered entirely through crowdsourcing.

(more…)

Jupiter-sized exoplanet [Wikipedia]


It seems the planetary structure of our solar system is an oddity compared to most of the exoplanetary systems so far discovered. On the other hand it’s easier to find planets close to their stars than those a long way away, so what is known so far might not be giving us the whole picture.

An international research team led by Université de Montréal astrophysicist Lauren Weiss has discovered that exoplanets orbiting the same star tend to have similar sizes and a regular orbital spacing, says Phys.org.

This pattern, revealed by new W. M. Keck Observatory observations of planetary systems discovered by the Kepler Telescope, could suggest that most planetary systems have a different formation history than the solar system.

Thanks in large part to the NASA Kepler Telescope, launched in 2009, many thousands of exoplanets are now known. This large sample allows researchers to not only study individual systems, but also to draw conclusions on planetary systems in general.

(more…)