A lot of people are puzzled by the current El Niño. Global average Sea Surface Temperature (SST) has been high, but we don’t seem to have the balmy winters of ten years ago. My simple model explains why.
The graph compares sea surface temperature HADsst2GL (red curve), with curves generated from solar and planetary data.
The black curve uses a combination of Length of Day (LOD) data and sunspot number data. The monthly sunspot number values are added cumulatively as positive or negative values departing from my estimated ocean equilibrium value of ~40SSN. The LOD values are added via a simple best fit scaling technique using a hghly sensitive piece of equipment called tallbloke’s eyeball.
The yellow curve uses the sunspot numbers again, but instead of LOD data, I use the fact that LOD variation approximately correlates with variation in the distance of the solar system centre of mass in the ‘z’-axis from the solar equatorial plane (SSB-z) and substitute in those values instead as a scaled LOD proxy.
The green curve goes the whole hog. Since the SSB-z data can also be used as a proxy for sunspot numbers (on a different smoothing and lag value to the LOD proxy), it is used both for sunspot proxy and LOD proxy. This enables me to reconstruct past and predict future planetary surface temperatures, to a limited degree of accuracy.
There are a couple of obvious problems. The method does not capture individual El Niño events well. Nor does it predict individual big volcanos, although the volcanic explosivity index does correlate well with the motion of the planets, as I will show in a future post. One further problem is that the technique does not capture the collapse in solar activity which seems to occur when Uranus and Neptune are in conjunction, as at 1800-1840 during the Dalton Minimum, and during the Maunder minimum in the 1630’s . Whether we will see a similar deep solar minimum now following the conjunction of these two planets in 1993 remains to be seen.
The large departure of my reconstruction from the SST data around the WWII years is I believe due to well known issues with the switchover from bucket and thermometer measurements to ship engine cooling intake sensors on military vessels.
So, the basic premise of my model, is that a cumulative count of sunspots above and below the ocean equilibrium value I have determined will mimic the retention and release of energy from the ocean. At the same time, multi-decadal changes in Earth’s length of day which also correlate with the timings and sign of the major oceanic periodicities (PDO, AMO) add detail to the picture.
The high SSN of the late C20th means according to my model, that a lot of heat got absorbed into the ocean. Now the sunspot numbers are falling, that heat is being released again by El Niño’s and the temperature is dropping because that heat is escaping to space and not being replaced by solar energy into the oceans at the rate it was in the ’80’s and ’90’s. I have done calcs on this to support my theory and I will present them soon.
Comments please.











