Posts Tagged ‘planetary theory’

HR 8799 system [image credit: Many Worlds]

HR 8799 system [image credit: Many Worlds]


It can’t get much more obvious than this. The report says ‘it’s a one-two-four-eight resonance’ of the orbits of these massive planets, but we find it’s much nearer to 1:2:4:9, with the outer planet taking 450 years for one orbit.

The era of directly imaging exoplanets has only just begun, but the science and viewing pleasures to come are appealingly apparent says Many Worlds.

This evocative movie of four planets more massive than Jupiter orbiting the young star HR 8799 is a composite of sorts, including images taken over seven years at the W.M. Keck observatory in Hawaii. The movie clearly doesn’t show full orbits, which will take many more years to collect.

The closest-in planet circles the star in around 49 years [report incorrectly says 40]; the furthest takes more than 400 years. But as described by Jason Wang,  an astronomy graduate student at the University of California, Berkeley, researchers think that the four planets may well be in resonance with each other.
(more…)

Image credit: BBC

Image credit: BBC

It’s an old idea but a new theory. The research director says ‘This is very exciting and in accord with very recent findings of an ‘ocean’s worth’ of water in the Earth’s mantle’.
– – –
Earth’s water may have originally been formed by chemical reactions deep within the planet’s mantle, according to research led by University College Dublin.

The new theory offers an alternative explanation as to how the life-giving liquid may have originated on Earth reports Phys.org.

Previously, scientists have suggested that comets that collided with the planet could have deposited large amounts of ice on the Earth which later melted, forming water.
(more…)

hd163296

The spacing of the three rings described has a ratio of 3:5:8 according to the data given (60:100:160 AU) by Phys.org. This Fibonacci pattern may be telling us something about planetary formation.

Rice University astronomers and their colleagues have for the first time mapped gases in three dark rings around a distant star. The rings mark spaces where planets are thought to have formed from dust and gas around the star.

All the rings around HD 163296 are devoid of dust, and the international team of researchers led by Rice astronomer Andrea Isella is sure that planets, probably gas giants with masses comparable to Saturn, are responsible for clearing the outermost ones.

But the inner ring has far more carbon monoxide than the other two, leading them to believe no planet exists there. That remains unexplained, he said.

(more…)

Kuiper Belt [credit: amazingspace.org]

Kuiper Belt [credit: amazingspace.org]


The latest research claims to have detected resonant patterns in some of ‘these most distant Kuiper Belt objects’, perhaps suggesting the presence of a major ‘shepherding’ planetary body, as Phys.org reports.

As the search for a hypothetical, unseen planet far, far beyond Neptune’s orbit continues, research by a team of the University of Arizona provides additional support for the possible existence of such a world and narrows the range of its parameters and location.

Led by Renu Malhotra, a Regents’ Professor of Planetary Sciences in the UA’s Lunar and Planetary Lab, the team found that the four Kuiper Belt Objects with the longest known orbital periods revolve around the Sun in patterns most readily explained by the presence of a hypothetical “Planet Nine” approximately ten times the mass of Earth.

(more…)

Synchronized orbits of the Kepler-80 system [Credit: Florida Institute of Technology]

Synchronized orbits of the Kepler-80 system [Credit: Florida Institute of Technology]

Another example of planetary resonance has been discovered thanks to NASA’s Kepler space telescope.
H/T Phys.org

Located about 1,100 light years away, Kepler-80, named for the NASA telescope that discovered it, features five small planets orbiting in extreme proximity to their star.

As early as 2012, Kepler scientists found that all five planets orbit in an area about 150 times smaller than the Earth’s orbit around the Sun, with “years” of about one, three, four, seven and nine days.

(more…)

More big planets than this in our solar system? [credit: wikipedia]

More big planets than this in our solar system? [credit: wikipedia]


Talk of a ‘Planet 9’ has stirred up the planetary theorists it seems. Think of a number…
H/T Daily Telegraph

The Solar System may hold 10 or 11 planets, scientists have predicted after running new computer models on the data which led to the announcement of Planet Nine.

In January, astronomers Professor Konstantin Batygin and Professor Mike Brown from California Institute of Technology predicted the existence of a ninth planet after discovering that 13 objects in the Kuiper Belt – an area beyond Neptune – were all moving together as if ‘lassooed’ by the gravity of a huge object.

(more…)

The Kepler-223 planetary system, which has long-term stability because its four planets interact gravitationally to keep the beat of a carefully choreographed dance as they orbit their host star. [credit: W.Rebel]

The Kepler-223 planetary system, which has long-term stability because its four planets interact gravitationally to keep the beat of a carefully choreographed dance as they orbit their host star.
[credit: W.Rebel]


As the report says: ‘Kepler-223’s two innermost planets are in a 4:3 resonance. The second and third are in a 3:2 resonance. And the third and fourth are in a 4:3 resonance.’ They are ‘far more massive than Earth’. Interesting to say the least.

The four planets of the Kepler-223 star system seem to have little in common with the planets of Earth’s own solar system. And yet a new study shows that the Kepler-223 system is trapped in an orbital configuration that Jupiter, Saturn, Uranus, and Neptune may have broken from in the early history of the solar system.

“Exactly how and where planets form is an outstanding question in planetary science,” said the study’s lead author, Sean Mills, a graduate student in astronomy & astrophysics at the University of Chicago. “Our work essentially tests a model for planet formation for a type of planet we don’t have in our solar system.”

(more…)

credit: cgtrader

credit: cgtrader


This will have theorists scratching their heads.

The idea that the young Earth had a thicker atmosphere turns out to be wrong. New research from the University of Washington uses bubbles trapped in 2.7 billion-year-old rocks to show that air at that time exerted at most half the pressure of today’s atmosphere.

The results, published online May 9 in Nature Geoscience, reverse the commonly accepted idea that the early Earth had a thicker atmosphere to compensate for weaker sunlight.

The finding also has implications for which gases were in that atmosphere, and how biology and climate worked on the early planet.

(more…)

Pluto's non-standard orbit [credit: Wikipedia]

Pluto’s non-standard orbit [credit: Wikipedia]

‘Pluto’s orbital period is 248 Earth years. Its orbital characteristics are substantially different from those of the planets, which follow nearly circular orbits around the Sun close to a flat reference plane called the ecliptic. In contrast, Pluto’s orbit is moderately inclined relative to the ecliptic (over 17°) and moderately eccentric (elliptical). This eccentricity means a small region of Pluto’s orbit lies nearer the Sun than Neptune’s.’ – Wikipedia

(more…)

moonscape
Whether this is the last word on the origin of the Moon remains to be seen.

The moon was formed by a violent, head-on collision between the early Earth and a “planetary embryo” called Theia approximately 100 million years after the Earth formed, UCLA geochemists and colleagues report.

Scientists had already known about this high-speed crash, which occurred almost 4.5 billion years ago, but many thought the Earth collided with Theia (pronounced THAY-eh) at an angle of 45 degrees or more — a powerful side-swipe. New evidence reported Jan. 29 in the journal Science substantially strengthens the case for a head-on assault.

(more…)

Perihelion precession by season [credit: Wikipedia]

Perihelion precession by season [credit: Wikipedia]


Willy de Rop of the Royal Observatory of Belgium wrote a paper entitled ‘A tidal period of 1800 years’ in 1971 about tides and the motion of the Moon. It generated some interest and was referred to in at least one other paper, but on closer consideration leads to some ideas we can put forward here.

The opening paragraph states:
‘The Swedish oceanographer O. Pettersson
has presented evidence indicating that the last
maximum of oceanic tides occurred about 1433.
He pointed out that there is a coincidence
between a tidal period of 1800 years and climatic
changes of the same period. We think we
can explain this period as follows.’

(more…)

Strange orbits of some outer solar system bodies

Strange orbits of some outer solar system bodies


A newly found object may set a new record for the most distant dwarf planet in the solar system. The object, called V774104, lies about nine and a half billion miles from the sun, or two to three times farther away than Pluto.

V774104 is a little less than half Pluto’s size, and like Pluto it may move closer toward or farther away from the sun during its orbit, but those details of its motion cannot yet be determined.

“That’s pretty much all we know about it. We don’t know its orbit yet because we only just discovered it about two weeks ago,” astronomer Scott Sheppard, of the Carnegie Institution for Science and one of the co-discoverers of the new object, said in an interview with Space.com .

(more…)

lunar_TYTallbloke writes: Stuart ‘Oldbrew’ has been getting his calculator warm to discover the congruences in various aspects of the Lunar orbit around Earth, and its relationship to Earth-Moon orbit around the Sun. Emerging from this study are some useful insights into longer periods, such as the ‘precession of the equinoxes‘.

Some matching periods of lunar numbers:
86105 tropical months (TM) @ 27.321582 days = 2352524.8 days
85377 anomalistic months (AM) @ 27.55455 days = 2352524.8 days
79664 synodic months (SM) @ 29.530589 days = 2352524.8 days

These identical values are used in the chart on the right (top row). The second row numbers are the difference between the numbers in the first row (TM – AM and AM – SM).
The derivation of the third row number (6441) is shown on the chart itself [click on the chart to enlarge it].

The period of 6441 tropical years (6440.75 sidereal years) is one quarter of the Earth’s ‘precession of the equinox’.
Multiplying by 4: 25764 tropical years = 25763 sidereal years.
The difference of 1 is due to precession.

(more…)

Impact [image credit: karbalion.com]

Impact [image credit: karbalion.com]


Another puzzle for planetary cycle researchers to ponder, as this phys.org report explains.

Mass extinctions occurring over the past 260 million years were likely caused by comet and asteroid showers, scientists conclude in a new study published in Monthly Notices of the Royal Astronomical Society. For more than 30 years, scientists have argued about a controversial hypothesis relating to periodic mass extinctions and impact craters—caused by comet and asteroid showers—on Earth.

In their MNRAS paper, Michael Rampino, a New York University geologist, and Ken Caldeira, a scientist in the Carnegie Institution’s Department of Global Ecology, offer new support linking the age of these craters with recurring mass extinctions of life, including the demise of dinosaurs. Specifically, they show a cyclical pattern over the studied period, with both impact craters and extinction events taking place every 26 million years.

(more…)

The orbit of Triton (red) is opposite in direction and tilted −23° compared to a typical moon's orbit (green) in the plane of Neptune's equator [image credit: Wikipedia]

The orbit of Triton (red) is opposite in direction and tilted −23° compared to a typical moon’s orbit (green) in the plane of Neptune’s equator [image credit: Wikipedia]


Triton is the seventh largest moon in the solar system. Not only that, it has over 99% of the mass of all Neptune’s moons combined. Its retrograde orbit makes it unique among the large moons of the solar system, and it is also the coldest known planetary body at -235° C (-391° F).

Turning to the orbit numbers, and looking at Triton’s closest ‘inner’ (nearer to Uranus) neighbour Proteus and the next two ‘outer’ moons, we find these values (in days):
1.122d Proteus
5.877d Triton
360.13d Nereid
1879.08d Halimede

We’ll treat Proteus and Triton as a pair, and the same for Nereid and Halimede.
Nereid is over fifteen times further from Uranus than Triton is, so hardly a neighbour at all.

Looking at the orbit ratios (which are also the rotation ratios, as usual with moons):
T/P = 5.877 / 1.122 = 5.238
H/N = 1879.08 / 360.13 = 5.218

The first thing to say is that the two results are very similar. One is about 99.62% of the other.

(more…)

Neptune (top), Uranus, Saturn, Jupiter (bottom)

Neptune (top), Uranus, Saturn, Jupiter (bottom)


Continuing our long-term series researching Fibonacci and/or Phi based ratios in planetary conjunction periods, it’s time for a look at the inner- and outer-most gas giants of our solar system: Jupiter and Neptune.

Initial analysis shows the period of 14 Jupiter orbits is close to that of one Neptune orbit of the Sun, and even closer to the period of 13 (14 less 1) Jupiter-Neptune (J-N) conjunctions.

It also turns out that there’s a multiple of 13 J-N that equates to a whole number of Earth orbits:
Jupiter-Neptune(J-N) average conjunction period = 12.782793 years
221 J-N = ~2825 years (2824.9972y)
(221 = 13 x 17)

But this period is not a whole number of either Jupiter or Neptune orbits.
This is resolved by multiplying by a factor of 7.

(more…)

Saturn + rings {image credit: NASA]

Saturn + rings [image credit: NASA]


Researchers claim to have unearthed a universal ‘inverse cubes law’ relating to planetary rings, reports Phys.org.

In a breakthrough study, an international team of scientists, including Professor Nikolai Brilliantov from the University of Leicester, has solved an age-old scientific riddle by discovering that planetary rings, such as those orbiting Saturn, have a universally similar particle distribution.

The study, which is published in the academic journal Proceedings of the National Academy of Sciences (PNAS), also suggests that Saturn’s rings are essentially in a steady state that does not depend on their history.

(more…)

See main post for details [image credit: Wikipedia / WolfmanSF]

See main post for details [image credit: Wikipedia / WolfmanSF]


In this extract from Wikipedia we’ve highlighted the relevant part in bold, so without more ado:

Resonances
Styx, Nix, and Hydra are in a 3-body orbital resonance with orbital periods in a ratio of 18:22:33. The ratios are exact when orbital precession is taken into account. This means that in a recurring cycle there are 11 orbits of Styx for every 9 of Nix and 6 of Hydra. Nix and Hydra are in a simple 2:3 resonance. The ratios of synodic periods are such that there are 5 Styx–Hydra conjunctions and 3 Nix–Hydra conjunctions for every 2 conjunctions of Styx and Nix.

(more…)

Comparison of the eight brightest TNOs [credit: Wikipedia]

Comparison of the eight brightest TNOs [credit: Wikipedia]


As Pluto is getting some media attention due to the impending ‘fly-by’ of a NASA space probe, let’s take a look at its orbital relationship with its neighbours.

(more…)

Jodrell Bank radio telescope, Cheshire (UK) [credit: Mike Peel / Wikipedia]

Jodrell Bank radio telescope, Cheshire (UK)
[credit: Mike Peel / Wikipedia]


This is a new (to us) angle on certain lines of enquiry re. planetary theory in Talkshop blog posts.

John H. Nelson’s theory of propagation: Is there anything to it? – By David Dalton, K9WQ

In March 1951, John H. Nelson, an engineer for the RCA Communications Co. in New York, published an article in RCA Review describing a theory for predicting shortwave radio propagation over the North Atlantic. Nelson developed the theory by comparing planetary positions relative to the sun with logs of propagation conditions maintained at RCA’s receiving station at Riverhead, Long Island.

The article said that certain configurations of the six inner planets correlated with degraded propagation conditions. Nelson was not dogmatic about his theory. Rather, in the article and in a follow-up article published in May 1952, he encouraged further study [see footnote]. Nelson believed that his theory was about 85 percent accurate in its predictions.

(more…)