Posts Tagged ‘sunspots’

UK winter weather forecast [image credit: BBC]


So says a new study, which also has the benefit of being topical. The current weak solar cycle is highlighted.

Periods of extreme cold winter weather and perilous snowfall, similar to those that gripped the UK in a deep freeze with the arrival of the ‘Beast from the East’, could be linked to the solar cycle, pioneering new research has shown.

A new study, led by Dr Indrani Roy from the University of Exeter, has revealed when the solar cycle is in its ‘weaker’ phase, there are warm spells across the Arctic in winter, as well as heavy snowfall across the Eurasian sector, reports Phys.org.

(more…)

.
.
There may be consequences for electrical activity on Earth, as well as space radiation changes.

The Next Grand Minimum

Meteorologist Paul Dorian, Vencore, Inc.

All indications are that the upcoming solar minimum which is expected to begin in 2019 may be even quieter than the last one which was the deepest in nearly a century. One of the natural impacts of decreasing solar activity is the weakening of the ambient solar wind and its magnetic field which, in turn, allows more and more cosmic rays to penetrate the solar system. The intensification of cosmic rays can have important consequences on such things as Earth’s cloud cover and climate, the safety of our astronauts exploring in space, and lightning.

SIDC+DailySunspotNumberSince1900Daily observations of the number of sunspots since 1 January 1900 according to Solar Influences Data Analysis Center (SIDC). The thin blue line indicates the daily sunspot number, while the dark blue line indicates the running annual average. The recent low sunspot activity is clearly reflected in the recent low values…

View original post 60 more words

NASA image of the day: Sun’s quiet corona [credit: NASA/SDO]


‘Magnetic’ seems to mean ‘electromagnetic’ in this report. There’s a definition of an Alfvén wave here.

Scientists at Queen’s University Belfast have led an international team to the ground-breaking discovery that magnetic waves crashing through the sun may be key to heating its atmosphere and propelling the solar wind, as Phys.org reports.

The sun is the source of energy that sustains all life on Earth but much remains unknown about it. However, a group of researchers at Queen’s have now unlocked some mysteries in a research paper, which has been published in Nature Physics.

In 1942, Swedish physicist and engineer Hannes Alfvén predicted the existence of a new type of wave due to magnetism acting on a plasma, which led him to obtain the Nobel Prize for Physics in 1970.

Since his prediction, Alfvén waves have been associated with a variety of sources, including nuclear reactors, the gas cloud that envelops comets, laboratory experiments, medical MRI imaging and in the atmosphere of our nearest star – the sun.

(more…)

Quiet sun [image credit: NASA]


This is an opinion piece, a sort of alarmism-in-reverse, and no-one can be sure that any given weather or climate forecast will prove to be accurate or even on the right lines, but the arguments are here to consider. Numerous climate researchers do expect the solar slowdown to push average temperatures lower for at least a decade or two. Others think 0.04% carbon dioxide in the atmosphere will counter all that.

The danger from the Global Warming crowd is that they are misleading the entire world and preventing us from what is dangerously unfolding that sparks the rapid decline in civilization – GLOBAL COOLING, says Martin Armstrong at Armstrong Economics.

I previously warned that this is not my opinion, but simply our computer. If it were really conscious it would be running to store to buy heating pads. This year will be much colder  for Europe than the last three. It will also be cold in the USA.

We are in a global cooling period and all the data we have in our computer system warns that the earth is turning cold not warm.

(more…)

.
.
History suggests extended quiet periods on the Sun do have consequences on Earth, so it will be interesting to see how things play out over the next few years and beyond. Watch out for the length of this solar cycle as well, following a run of shorter than average cycles in the last 100 years or so.

The Next Grand Minimum

by Meteorologist Paul Dorian, Vencore, Inc.

Overview

Solar cycle 24 has turned out to be historically weak with the lowest number of sunspots since cycle 14 peaked more than a century ago in 1906 and by some measures, it is the third weakest since regular observations began around 1755. This historically weak solar cycle continues a weakening trend in solar irradiance output since solar cycle 21 peaked around 1980 and the sun is fast-approaching the next solar minimum. The last solar minimum lasted from 2008 to 2009 and the sun was as quiet during that time as it has been since 1978. The sun is likely to enter the next solar minimum phase within three years or so. The sun has been spotless for 26% of the time in 2017 (90 days) and the blank look should increase in frequency over the next couple of years leading into the next…

View original post 331 more words

Solar flare [credit: NASA]


Even though the current solar cycle (SC 24) is well-known for its relatively low level of sunspots, it can still produce surprisingly powerful bursts of ‘counter-intuitive’ activity, causing solar scientists to put their thinking caps on.

A series of rapid-fire solar flares is providing the first chance to test a new theory of why the sun releases its biggest outbursts when its activity is ramping down, says Science News.

Migrating bands of magnetism that meet at the sun’s equator may cause the biggest flares, even as the sun is going to sleep. A single complex sunspot called Active Region 2673 emitted seven bright flares — powerful bursts of radiation triggered by magnetic activity — from September 4 to September 10.

Four were X-class solar flares, the most intense kind.

(more…)

Credit: NASA


Extreme ultraviolet radiation (EUV) is perhaps an aspect of solar activity that gets less attention than it should. The authors make the interesting point in their introduction to the research article that ‘Although the total solar irradiance at Earth varies very little, the relative variance in the EUV is as large as the mean irradiance. This EUV light interacts with Earth’s thermosphere and stratosphere and may affect climate in a “top-down” process in regions such as northern Europe’.

A pair of researchers with Aberystwyth University in the U.K. has used data from NASA’s Solar Dynamics Observatory to learn more about how the sun’s corona behaves over differing stages of its 11-year cycle, reports Bob Yirka at phys.org.

In their paper published on the open access site Science Advances, Huw Morgan and Youra Taroyan describe attributes of the sun they observed over time and what they discovered about the “quiet corona” and its possible impact on us back here on Earth.

(more…)

Northern Lights illuminate sky over UK [image credit: BBC]

Northern Lights illuminate sky over UK [image credit: BBC]


‘We could see these changes occurring as early as the next few decades’, say the researchers.

Britain may lose the magic of the Northern Lights by the middle of the century due to major shifts in solar activity, scientists have discovered.

Space scientists at the University of Reading conclude that plummeting solar activity will shrink the overall size of the sun’s ‘atmosphere’ by a third and weaken its protective influence on the Earth, reports Phys.org.

This could make the Earth more vulnerable to technology-destroying solar blasts and cancer-causing cosmic radiation, as well as making the aurora less common away from the north and south polar regions for 50 years or more.
(more…)

Hurricane Katrina [image credit: NASA]

Hurricane Katrina [image credit: NASA]


Although some climate alarmists contend that CO2-induced global warming will increase the number of hurricanes in the future, the search for such effect on Atlantic Ocean tropical cyclone frequency has so far remained elusive, reports CO2 Science.

And with the recent publication of Rojo-Garibaldi et al. (2016), it looks like climate alarmists will have to keep on looking, or accept the likelihood that something other than CO2 is at the helm in moderating Atlantic hurricane frequency.

In their intriguing analysis published in the Journal of Atmospheric and Solar-Terrestrial Physics, the four-member research team of Rojo-Garibaldi et al. developed a new database of historical hurricane occurrences in the Gulf of Mexico and the Caribbean Sea, spanning twenty-six decades over the period 1749 to 2012.
(more…)

Petrified log at Petrified Forest National Park, AZ [image credit: Jon Sullivan / Wikipedia]

Petrified log at Petrified Forest National Park, AZ
[image credit: Jon Sullivan / Wikipedia]


They seem to base their estimates of the past solar cycle length on a study of only 79 years’ worth of data which is almost certainly too short for high accuracy, but the results are interesting nevertheless.

A pair of German researchers has found evidence in ancient tree rings of a solar sunspot cycle millions of years ago similar to the one observed in more modern times, reports Phys.org.

In their paper published in the journal Geology, Ludwig Luthardt and Ronny Rößler describe how they gathered an assortment of petrified tree samples from a region in Germany and used them to count sunspot cycles.

Scientists know that the sun undergoes a sunspot cycle of approximately 11 years—some spots appear, grow cooler and then slowly move toward the equator and eventually disappear—the changes to the sun spots cause changes to the brightness level of the sun—as the level waxes and wanes, plants here on Earth respond, growing more or less in a given year—this can be seen in the width of tree rings.

In this new effort, the researchers gathered petrified tree samples from a region of Germany that was covered by lava during a volcanic eruption approximately 290 million years ago (during the Permian period), offering a historical record of sun activity.
(more…)

Credit: cherishthescientist.net

Credit: cherishthescientist.net


We’ve ignored the early history and jumped in further on in this Space.com article about sunspots and the solar cycle. The astrophysicist author wonders if it will take another 400 years to figure out why the solar cycle (the period between magnetic reversals) is around 11 years on average. Maybe a few Talkshop posts could be helpful, dare we say?

What the heck was going on to cause these spots? In the early 1900s, a few key observations pointed astronomers and physicists in the right direction. For one, sunspot activity seemed to cycle every 11 years, from lots of sunspots to just a few-sunspots and back to lots of sunspots.

The cycle was even apparent during the weird “Maunder Minimum,” when there was very little activity in the 1600s (the term was coined much later). 

Then there’s the temperature. Sunspots look dark, but that’s only in comparison to the blazing solar surface around them; they’re cooler than the rest of the sun, but still ragingly hot in their own right.

(more…)

Where to find Proxima Centauri [credit: Wikipedia]

Where to find Proxima Centauri [credit: Wikipedia]


Co-author Jeremy Drake said: “The existence of a cycle in Proxima Centauri shows that we don’t understand how stars’ magnetic fields are generated as well as we thought we did.” Let the head-scratching begin.

Observations confirm that the closest star to our solar system has a regular magnetic cycle similar to our Sun, reports Sky & Telescope.

With the recent discovery of a potentially habitable planet around Proxima Centauri, astronomers have been studying this star with renewed fervor. Part of their attention focuses on the star’s behavior. M dwarfs are notorious for their flares, and such stellar tantrums could be deadly for budding life on nearby planets.

(more…)

Solar flare erupting from a sunspot [image credit: space.com]

Solar flare erupting from a sunspot [image credit: space.com]


Researchers have unearthed a cause-and-effect conundrum for solar physicists, involving solar flares. Phys.org reports.

Solar physicists have long viewed the rotation of sunspots as a primary generator of solar flares – the sudden, powerful blasts of electromagnetic radiation and charged particles that burst into space during explosions on the sun’s surface. Their turning motion causes energy to build up that is released in the form of flares.

But a team of NJIT scientists now claims that flares in turn have a powerful impact on sunspots, the visible concentrations of magnetic fields on the sun’s surface, or photosphere. In a paper published in Nature Communications this week, the researchers argue that flares cause sunspots to rotate at much faster speeds than are usually observed before they erupt.

(more…)

A solar cycle 24 prediction chart [credit:NASA]

A solar cycle 24 prediction chart [credit:NASA]


What follows are extracts, omitting a few of the more technical aspects which can be viewed in the GWPF’s full article here. Possible ‘colder climates’ get a mention.

Sten Odenwald of NASA Heliophysics Education Consortium writes:
Forecasters are already starting to make predictions for what might be in store as our sun winds down its current sunspot cycle in a few years. Are we in for a very intense cycle of solar activity, or the beginning of a century-long absence of sunspots and a rise in colder climates?

Ever since Samuel Schwabe discovered the 11-year ebb and flow of sunspots on the sun in 1843, predicting when the next sunspot cycle will appear, and how strong it will be, has been a cottage industry among scientists and non-scientists alike.

(more…)

Why Phi? – modelling the solar cycle

Posted: August 27, 2016 by oldbrew in solar system dynamics
Tags: ,
Credit: cherishthescientist.net

Credit: cherishthescientist.net

We’re familiar with the idea of the solar cycle, e.g.:
‘The solar cycle or solar magnetic activity cycle is the nearly periodic 11-year change in the Sun’s activity (including changes in the levels of solar radiation and ejection of solar material) and appearance (changes in the number of sunspots, flares, and other manifestations).

They have been observed (by changes in the sun’s appearance and by changes seen on Earth, such as auroras) for centuries.’
http://en.wikipedia.org/wiki/Solar_cycle

Here we’ll try a bit of pattern-hunting, so to speak.

(more…)

.
.
James Marusek’s paper says: I propose two mechanisms primarily responsible for Little Ice Age climatic conditions. These two components are Cloud Theory and Wind Theory.

Thanks to Paul Homewood for bringing this to our attention.

[Click on ‘view original post’ below to find a link to the full paper].

NOT A LOT OF PEOPLE KNOW THAT

By Paul Homewood

image

James Marusek has sent me his latest paper, Little Ice Age Theory.

Excerpts below:

INTRODUCTION

The sun is undergoing a state change. It is possible that we may be at the cusp of the next Little Ice Age. For several centuries the relationship between periods of quiet sun and a prolonged brutal cold climate on Earth (referred to as Little Ice Ages) have been recognized. But the exact mechanisms behind this relationship have remained a mystery. We exist in an age of scientific enlightenment, equipped with modern tools to measure subtle changes with great precision. Therefore it is important to try and come to grips with these natural climatic drivers and mold the evolution of theories that describe the mechanisms behind Little Ice Ages.

The sun changes over time. There are decadal periods when the sun is very active magnetically, producing many sunspots. These periods are referred…

View original post 784 more words

A bit less of this to look forward to? [image credit: traveldailynews.com]

A bit less of this to look forward to? [image credit: traveldailynews.com]


Some solar theories will be put to the test in the next few decades by the Sun’s ongoing behaviour patterns.

Is Earth slowly heading for a new ice age? Looking at the decreasing number of sunspots, it may seem that we are entering a nearly spotless solar cycle which could result in lower temperatures for decades. “The solar cycle is starting to decline. Now we have less active regions visible on the sun’s disk,” Yaireska M. Collado-Vega, a space weather forecaster at NASA’s Goddard Space Flight Center, told Phys.org.

But does it really mean a colder climate for our planet in the near future? In 1645, the so-called Maunder Minimum period started, when there were almost no sunspots. It lasted for 70 years and coincided with the well-known “Little Ice Age”, when Europe and North America experienced lower-than-average temperatures. However, the theory that decreased solar activity caused the climate change is still controversial as no convincing evidence has been shown to prove this correlation.

(more…)

The 'before' version of sunspot numbers [Credit: Wikipedia]

The ‘before’ version of sunspot numbers [Credit: Wikipedia]

This result has been at least half-expected ever since the ‘revision’ of sunspot numbers was announced. The phrase ‘desired outcome’ springs to mind.

The Sunspot Number is a crucial tool used to study the solar dynamo, space weather and climate change, reports Phys.org. It has now been recalibrated and shows a consistent history of solar activity over the past few centuries. The new record has no significant long-term upward trend in solar activity since 1700, as was previously indicated. This suggests that rising global temperatures since the industrial revolution cannot be attributed to increased solar activity.

The analysis, its results and its implications for climate research were made public today at a press briefing at the International Astronomical Union (IAU) XXIX General Assembly, currently taking place in Honolulu, Hawaii, USA.

(more…)

What happened to the sunspots?

Posted: July 14, 2015 by oldbrew in Solar physics
Tags:

Giant sunspot group AR1944 in January 2014. [Credit: NASA/SDO]

Giant sunspot group AR1944 in January 2014. [Credit: NASA/SDO]


Communities Digital News explains:

On June 30, 2015 the globally recognized maximum for the current 11-year sunspot cycle was 81.9. On July 1, 2015 that number suddenly leaped all the way up to 116.4!

Stranger still, the current cycle (Cycle 24) fell from being the 7th weakest sunspot maximum since 1749 to being the 4th weakest sunspot maximum. Cycle 24’s sunspot number jumped by 30 percent, yet its ranking dropped by three places. How can that be?

(more…)

[Image credit: NASA]

[Image credit: NASA]


Another solar theory rolls off the production line – as ever, time will tell if it lives up to its own billing.

A new model of the Sun’s 11-year heartbeat suggests that solar activity will fall by 60 per cent during the 2030s, dropping to conditions last seen during the Maunder minimum, reports Ice Age Now.

Beginning in about 1645, the Maunder minimum corresponded with the severest portion of the last
“Little Ice Age.”

(more…)