Posts Tagged ‘phi’


This was a surprise, but whatever the interpretation, the numbers speak for themselves.

‘Richard Christopher Carrington determined the solar rotation rate from low latitude sunspots in the 1850s and arrived at 25.38 days for the sidereal rotation period. Sidereal rotation is measured relative to the stars, but because the Earth is orbiting the Sun, we see this period as 27.2753 days.’ – Wikipedia.

What happens if we relate this period to the lunar draconic year?

(more…)

Image credit: interactivestars.com


It turns out that the previous post was only one half of the lunar evection story, so this post is the other half.

There are two variations to lunar evection, namely evection in longitude (the subject of the previous post) and evection in latitude, which ‘generates a perturbation in the lunar ecliptic latitude’ (source).

It’s found that the first is tied to the full moon cycle and the second to the draconic year.

(more…)

Why Phi? – a lunar evection model

Posted: November 16, 2018 by oldbrew in Fibonacci, moon, Phi, solar system dynamics
Tags: ,

Apogee = position furthest away from Earth. Earth. Perihelion = position closest to the sun. Moon. Perigee = position closest to Earth. Sun. Aphelion = position furthest away from the sun. (Eccentricities greatly exaggerated!)

Lunar evection has been described as the solar perturbation of the lunar orbit.

One lunar evection is the beat period of the synodic month and the full moon cycle. The result is that it should average about 31.811938 days (45809.19 minutes).

Comparing synodic months (SM), anomalistic months (AM), and lunar evections (LE) with the full moon cycle (FMC) we find:
1 FMC = 13.944335 SM
1 FMC = 13.944335 + 1 = 14.944335 AM
1 FMC = 13.944335 – 1 = 12.944335 LE

Since 0.944335 * 18 = 16.9983 = 99.99% of 17, and 18 – 17 = 1, we can say for our model:
18 FMC = 233 LE (18*13, -1) = 251 SM (18*14, -1) = 269 AM (18*15, -1)
See: 3 – Matching synodic and anomalistic months.
(more…)

Why Phi: is the Moon a phi balloon? – part 2

Posted: November 9, 2018 by oldbrew in Astrophysics, moon, Phi
Tags: ,

Credit: universetoday.com


Picking up from where we left off here

Three well-known aspects of lunar motion are:
Lunar declination – minimum and maximum degrees
Orbital parameters – perigee and apogee distances (from Earth)
Anomalistic month – minimum and maximum days

Standstill limits due to the lunar nodal cycle

‘The major standstill limit of the moon can be reached if the lunar node is near the vernal (or autumnal) point, and with the moon at its max. distance from the equator, equal to a declination at present days of 23.44° + 5.1454°= 28.59°.

The minor standstill limit of the moon can be reached if the lunar node is near the vernal (or autumnal) point, and with the moon at its min. distance from the equator, equal to a declination at present days of 23.44°- 5.1454° = 18.29°.’
http://iol.ie/~geniet/eng/moonperb.htm#nodes

28.59 / 18.29 = 1.5631492
4th root of 1.5631492 = 1.11815
This number leads to the key to the puzzle.

(more…)


Here we find a match between the orbit numbers of Jupiter, Saturn and Uranus and see what that might tell us about certain patterns in the solar system.

715 U = 60072.044 years
2040 S = 60072.895 years
5064 J = 60072.282 years
Data source: Nasa/JPL – Planets and Pluto: Physical Characteristics

The Jupiter-Saturn part of the chart derives directly from this earlier Talkshop post:
Why Phi? – Jupiter, Saturn and the de Vries cycle

(more…)

A montage of Uranus’ large moons and one smaller moon: from left to right Puck, Miranda, Ariel, Umbriel, Titania and Oberon. Size proportions are correct. [image credit: Vzb83 @ Wikipedia (from originals taken by NASA’s Voyager 2)]


The five major moons of Uranus in ascending distance from the planet are:
Miranda, Ariel, Umbriel, Titania and Oberon

Of these, the first three exhibit a synodic resonance similar to that of Jupiter’s Galilean moons, as we showed here:
Why Phi? – the resonance of Jupiter’s Galilean moons

Quoting from that post:
The only exact ratio is between the synodic periods which is 3:2:1.
It isn’t necessary to have an exact 4:2:1 orbit ratio in order to get a 3:2:1 synodic ratio.

(more…)


This started as a search for a period when the Sun and the Moon would both complete a whole number of rotations.
The result was:
Solar: 25.38 days * 197 = 4999.860 d
Lunar: 27.321662 * 183 = 4999.864 d
(data sources: see reference notes at end)

Taking these as equivalent, we have 197-183 = 14 ‘beats’.
197 = 14*14, +1
183 = 13*14, +1
4999.864 / 14 = 357.13314 days
357.13314 days * 45/44 = 365.2498 days
45 * 14 (630) beats = 44 * 14 (616) calendar years, difference = 0.022 day

So the beat period of the two rotations is 44/45ths of a year, i.e. the difference in number of rotations is exactly 1 in that length of time.
630 beats = 616 years (630 – 616 = 14)
616/45 = 13.68888 calendar years = 4999.8663 days
184 lunar sidereal months (rotations) = 4999.864 days

Then something else popped up…

The Phi factor:
‘We recover a 22.14-year cycle of the solar dynamo.’ (2016 paper)
See: Why Phi? – modelling the solar cycle

Solar Hale cycle = ~22.14 years (est. mean)
13.68888 * Phi = 22.149~ years
22.14 / 13.68888 = 1.61737 (99.96% of Phi)
(55/34 = 1.617647)

From the same post:
Jupiter-Saturn axial period (J+S) is 8.456146 years.
That’s when the sum of J and S orbital movement in the conjunction period = 1

13.68888 / 8.456146 = 1.618808
Phi = 1.618034

Conclusion:
This cycle of solar and lunar sidereal rotation (SRC) sits at the mid-point of the Phi²:1 ratio between the J+S axial period and the mean solar Hale cycle, i.e. with a Phi ratio to one and inverse Phi to the other.
SRC = (J+S) * Phi
SRC = Hale / Phi
SRC = Hale – (J+S)
(Mean Hale value is assumed)

In a period of 616 years there are 45 SRC.
The period is 44 * 14 years = 45 SRC = 45 * 14 beats.
SRC * (45/44) = 14 years.

Cross-checks:
Carrington rotations per 616 y = 8249
8249 CR / 45 = 4999.865 days

Synodic months per 616 y = 7619
7619 SM / 45 = 4999.856 days
8249 – 7619 = 630 = 45 * 14

45*183 sidereal months = 8235
8235 – 7619 = 616
8249 CR – 8235 Sid.M = 14
Beat period of CR and Sid.M = 616/14 = 44 years = 45 * (13.6888 / 14)
Every 44 years there will be exactly one less lunar rotation (sidereal month) than the number of Carrington rotations.

8249 CR – 7619 synodic months = 630 = 45 * 14
630 – 616 = 14
– – –
The anomalistic year

The beat period of the tropical month and solar sidereal rotation * 45/44 = the anomalistic year.
(27.321582 * 25.38) / (27.321582 – 25.38) = 357.14265 days
45 * 357.14265 = 16071.419 days
44 * 365.259636 = 16071.423 days

The anomalistic year is the time taken for the Earth to complete one revolution with respect to its apsides. The orbit of the Earth is elliptical; the extreme points, called apsides, are the perihelion, where the Earth is closest to the Sun (January 3 in 2011), and the aphelion, where the Earth is farthest from the Sun (July 4 in 2011). The anomalistic year is usually defined as the time between perihelion passages. Its average duration is 365.259636 days (365 d 6 h 13 min 52.6 s) (at the epoch J2011.0).
http://en.wikipedia.org/wiki/Year#Sidereal.2C_tropical.2C_and_anomalistic_years
– – –
Data sources

— Carrington Solar Coordinates:
Richard C. Carrington determined the solar rotation rate by watching low-latitude sunspots in the 1850s. He defined a fixed solar coordinate system that rotates in a sidereal frame exactly once every 25.38 days (Carrington, Observations of the Spots on the Sun, 1863, p 221, 244). The synodic rotation rate varies a little during the year because of the eccentricity of the Earth’s orbit; the mean synodic value is about 27.2753 days.
http://wso.stanford.edu/words/Coordinates.html

— The standard meridian on the sun is defined to be the meridian that passed through the ascending node of the sun’s equator on 1 January 1854 at 1200 UTC and is calculated for the present day by assuming a uniform sidereal period of rotation of 25.38 days (synodic rotation period of 27.2753 days, Carrington rotation).
http://jgiesen.de/sunrot/index.html

The sidereal month is the time between maximum elevations of a fixed star as seen from the Moon. In 1994-1998, it was 27.321662 days.
http://scienceworld.wolfram.com/astronomy/SiderealMonth.html

Why Phi? – the rainbow angle

Posted: September 3, 2017 by oldbrew in Maths, Measurement, Phi, weather
Tags:

The rainbow angle [credit: Hong Kong Observatory]


The minimum deviation angle for the primary bow [of a rainbow] is 137.5° according to Wikipedia. This is known as the rainbow angle. A circle is 360 degrees, so the ratio of the rainbow angle to the circle is therefore the square of the golden ratio i.e. 137.5:360 = 1:2.61818~.
– – –
Hong Kong Observatory has some useful explanatory text and graphics (rounding 137.5 to 138 degrees) titled:
Why is the region outside the primary rainbow much darker than that inside the primary rainbow?
Written by : SIU Kai-chee (summer intern) and HUNG Fan-yiu

Let’s first look at Figure 1, which shows sun rays entering a water drop and going through refraction and reflection.

The ray (ray no. 1) passing through the centre goes directly backward on reflection, i.e. a change in direction of 180 degrees.

For ray no. 2, this angle becomes smaller, following the rules of refraction and reflection.

For the next (ray no. 3) the angle continues to decrease, so on and so forth. This trend does not continue for long, however.

(more…)

The 1,100 year orbit of ‘DeeDee’

The solar system’s dwarf-planet population is about to increase by one, reports Space.com. The far-flung object 2014 UZ224 — informally known as DeeDee, for “Distant Dwarf” — is about 395 miles wide (635 kilometers), new observations reveal.

That means the frigid object probably harbors enough mass to be shaped into a sphere by its own gravity, entitling it to “dwarf planet” status, researchers said.

Astronomers first spotted DeeDee in 2014 using the optical Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile (though they didn’t announce the discovery until 2016).
(more…)

[click on image to enlarge]

[click on image to enlarge]


Another one to add to the ‘how and why did they do that?’ list of ancient sites. Years of research lie ahead.

Imagine you are about to plan and construct a building that involves several complicated geometrical shapes, but you aren’t allowed to write down any numbers or notes as you do it. For most of us, this would be impossible.

Yet, new research from Arizona State University has revealed that the ancient Southwestern Pueblo people, who had no written language or written number system, were able to do just that – and used these skills to build sophisticated architectural complexes, reports Phys.org.

Dr. Sherry Towers, a professor with the ASU Simon A. Levin Mathematical, Computational and Modeling Sciences Center, uncovered these findings while spending several years studying the Sun Temple archaeological site in Mesa Verde National Park in Colorado, constructed around A.D. 1200.

“The site is known to have been an important focus of ceremony in the region for the ancestral Pueblo peoples, including solstice observations,” Towers says. “My original interest in the site involved looking at whether it was used for observing stars as well.”

However, as Towers delved deeper into the site’s layout and architecture, interesting patterns began to emerge.
(more…)

Why Phi? – a lunar ratios model

Posted: January 8, 2017 by oldbrew in Cycles, modelling, moon, Phi
Tags: ,
Lunar ratios diagram

Lunar ratios diagram

The idea of this post is to try and show that the lunar apsidal and nodal cycles contain similar frequencies, one with the full moon cycle and the other with the quasi-biennial oscillation.

There are four periods in the diagram, one in each corner of the rectangle. For this model their values will be:

FMC = 411.78443 days
LAC = 3231.5 days
LNC = 6798.38 days
QBO = 866 days (derived from 2 Chandler wobbles @ 433 days each)
The QBO period is an assumption (see Footnote below) but the others can be calculated.
(more…)

Why Phi? – modelling the solar cycle

Posted: August 27, 2016 by oldbrew in solar system dynamics
Tags: ,
Credit: cherishthescientist.net

Credit: cherishthescientist.net

We’re familiar with the idea of the solar cycle, e.g.:
‘The solar cycle or solar magnetic activity cycle is the nearly periodic 11-year change in the Sun’s activity (including changes in the levels of solar radiation and ejection of solar material) and appearance (changes in the number of sunspots, flares, and other manifestations).

They have been observed (by changes in the sun’s appearance and by changes seen on Earth, such as auroras) for centuries.’
http://en.wikipedia.org/wiki/Solar_cycle

Here we’ll try a bit of pattern-hunting, so to speak.

(more…)

Pluto's non-standard orbit [credit: Wikipedia]

Pluto’s non-standard orbit [credit: Wikipedia]

‘Pluto’s orbital period is 248 Earth years. Its orbital characteristics are substantially different from those of the planets, which follow nearly circular orbits around the Sun close to a flat reference plane called the ecliptic. In contrast, Pluto’s orbit is moderately inclined relative to the ecliptic (over 17°) and moderately eccentric (elliptical). This eccentricity means a small region of Pluto’s orbit lies nearer the Sun than Neptune’s.’ – Wikipedia

(more…)

Why Phi? – lunar eclipses at Stonehenge

Posted: February 19, 2016 by oldbrew in Celestial Mechanics, Cycles, moon, Phi
Tags: ,

Bluestone Horseshoe at Stonehenge - 19 Stones

Bluestone Horseshoe at Stonehenge – 19 Stones


Stonehenge Visitors Guide – under ‘Eclipse Cycles’ – says:

‘Now, it’s widely accepted that Stonehenge was used to predict eclipses. The inner “horseshoe” of 19 stones at the very heart of Stonehenge actually acted as a long-term calculator that could predict lunar eclipses. By moving one of Stonehenge’s markers along the 30 markers of the outer circle, it’s discovered that the cycle of the moon can be predicted. Moving this marker one lunar month at a time – as opposed to one lunar day the others were moved – made it possible for them to mark when a lunar eclipse was going to occur in the typical 47-month lunar eclipse cycle. The marker would go around the circle 38 times [2 x 19] and halfway through its next circle, on the 47th full moon, a lunar eclipse would occur.’

(more…)

Combined precession cycle [credit: wikipedia]

Combined precession cycle [credit: wikipedia]


‘Because of apsidal precession the Earth’s argument of periapsis slowly increases; it takes about 112000 years for the ellipse to revolve once relative to the fixed stars. The Earth’s polar axis, and hence the solstices and equinoxes, precess with a period of about 26000 years in relation to the fixed stars. These two forms of ‘precession’ combine so that it takes about 21000 years for the ellipse to revolve once relative to the vernal equinox, that is, for the perihelion to return to the same date (given a calendar that tracks the seasons perfectly).’Wikipedia

Here we’ll fit the three precession cycles into one model and briefly examine its workings.

(more…)

Earth's orbit [credit: NASA]

Earth’s orbit [credit: NASA]


We’ll assume the diagram is self-explanatory but if not, this should help (see opening paragraphs).

We’re looking at Aphelion minus Perihelion (A – P) distances of the giant planets.
Figures are given in units of a million kms. (lowest value first), using Jupiter as a baseline.

(more…)

Io, Europa and Ganymede - three of Jupiter's four Galilean moons

Io, Europa and Ganymede – three of Jupiter’s four Galilean moons

The resonance of three of the four Galilean moons of Jupiter is well-known. Or is it?

We’re usually told there’s a 1:2:4 orbital ratio between Ganymede, Europa and Io, but while this is not far from the truth, a closer look shows something else.

(more…)

Phi and the Great Pyramid of Khufu

Posted: November 19, 2015 by oldbrew in Maths, Measurement, Phi
Tags:
Great Pyramid of Giza from a 19th-century stereopticon card photo [credit: Wikipedia]

Great Pyramid of Giza from a 19th-century stereopticon card photo [credit: Wikipedia]

Let’s have a look at some numbers for the Great Pyramid.

Source: Building the Great Pyramid (aka Cheops)
Copyright 2006 Franz Löhner and Teresa Zuberbühler

Dimensions as designed (in Egyptian royal cubits):
Length: 440
Height: 280
Slope: 356

Original dimensions as built (a,h and c in the pyramid diagram below):
Length: 230.36m (half = 115.18m)
Height: 146.59m
Slope: 186.42m

(more…)

lunar_TYTallbloke writes: Stuart ‘Oldbrew’ has been getting his calculator warm to discover the congruences in various aspects of the Lunar orbit around Earth, and its relationship to Earth-Moon orbit around the Sun. Emerging from this study are some useful insights into longer periods, such as the ‘precession of the equinoxes‘.

Some matching periods of lunar numbers:
86105 tropical months (TM) @ 27.321582 days = 2352524.8 days
85377 anomalistic months (AM) @ 27.55455 days = 2352524.8 days
79664 synodic months (SM) @ 29.530589 days = 2352524.8 days

These identical values are used in the chart on the right (top row). The second row numbers are the difference between the numbers in the first row (TM – AM and AM – SM).
The derivation of the third row number (6441) is shown on the chart itself [click on the chart to enlarge it].

The period of 6441 tropical years (6440.75 sidereal years) is one quarter of the Earth’s ‘precession of the equinox’.
Multiplying by 4: 25764 tropical years = 25763 sidereal years.
The difference of 1 is due to precession.

(more…)

Neptune (top), Uranus, Saturn, Jupiter (bottom)

Neptune (top), Uranus, Saturn, Jupiter (bottom)


Continuing our long-term series researching Fibonacci and/or Phi based ratios in planetary conjunction periods, it’s time for a look at the inner- and outer-most gas giants of our solar system: Jupiter and Neptune.

Initial analysis shows the period of 14 Jupiter orbits is close to that of one Neptune orbit of the Sun, and even closer to the period of 13 (14 less 1) Jupiter-Neptune (J-N) conjunctions.

It also turns out that there’s a multiple of 13 J-N that equates to a whole number of Earth orbits:
Jupiter-Neptune(J-N) average conjunction period = 12.782793 years
221 J-N = ~2825 years (2824.9972y)
(221 = 13 x 17)

But this period is not a whole number of either Jupiter or Neptune orbits.
This is resolved by multiplying by a factor of 7.

(more…)