Archive for the ‘solar system dynamics’ Category

NLCs Setting Records

Posted: July 23, 2021 by oldbrew in atmosphere, Clouds, research, solar system dynamics


NASA’s AIM Mission Overview says: ‘The primary goal of the mission is to determine why these night-shining clouds form. They are of special interest to scientists because the increased occurrence may be related to climate change.’ But it admits they’re ‘mysterious clouds’.
– – –

July 21, 2021: Noctilucent cloud (NLC) season is now 8 weeks old. This animation from NASA’s AIM spacecraft shows everything that has happened since the first clouds appeared in late May:

The last frame says it all: Noctilucent clouds are still bright and abundant. In fact, at the highest latitudes they are setting records.

“We’re seeing more clouds at 80°N than in any other year since AIM was launched,” says Cora Randall of the University of Colorado’s Laboratory for Atmospheric and Space Research. “Cloud frequencies at 80°N are around 85%, whereas it’s more typical to see frequencies of about 75%.” (‘Frequencies’ are a measure of patchiness. 100% is complete coverage; 0% is no clouds at all.)

“This morning, I watched a fantastic display, the best of the year so far ,” reports Marek Nikodem, who photographed the clouds from Szubin, Poland (53°N) on July 21st:

“It’s not the end of…

View original post 89 more words


Escaping a planet’s gravity is supposed to be difficult, but some Martian dust does just that.

July 6, 2021: Dust storms on Mars are bigger than we thought; they even spill into space. According to a recent paper in JGR Planets, Mars appears to be leaking dust, filling a huge volume of the inner solar system with gritty debris. You can see it with your naked eye. The bright triangle in this image from the Haleakalā Observatory in Hawaii is marsdust:

“A friend described it as blazing,” says Rob Ratkowski, who took the picture on Feb. 10th. “It was bright and very obvious.”

It’s called Zodiacal Light, and astronomers have long wondered what causes it. The usually faint triangle is sunlight scattered by dust in the plane of our solar system. The dust, it turns out, comes from Mars.

NASA’s Juno spacecraft flew through the dust cloud en route to Jupiter between 2011 and 2016. Dust grains smashed into Juno at about 10,000 mph…

View original post 225 more words

Huge Comet Discovery

Posted: June 25, 2021 by oldbrew in Astronomy, News, solar system dynamics


It’s really big, but its vast orbit won’t bring it past Earth.

June 23, 2021: Astronomers have just discovered a comet so big, it might actually be a minor planet. The object is named 2014 UN271. Astronomers Pedro Bernardinelli and Gary Bernstein found it in archival images from the Dark Energy Survey. It appears to be about 100 km wide, 2 or 3 times bigger than record-breaking Comet Hale-Bopp of the 1990s.

Above: A discovery image and orbit of huge Comet Bernardinelli-Bernstein

Now for the bad news. Although 2014 UN271 is falling toward the sun, we may never see it with our naked eyes. At closest approach in early 2031, the behemoth comet will be just outside the orbit of Saturn, too far for naked-eye viewing. Some astronomers are estimating a maximum brightness near magnitude +17, about the same as Pluto’s moon Charon.

It’s still an amazing discovery. 2014 UN271 has an extremely elongated orbit stretching from ~the neighborhood of…

View original post 200 more words

EarthspaceScientists previously proposed 26 million year cycles of mass extinctions, but this appears to correct the period. They suggest ‘cycles of activity in the Earth’s interior’ could be behind their new period, but then say: ‘However, similar cycles in the Earth’s orbit in space might also be pacing these events.’ Their study also says ‘a strong secondary signal occurs at a period 8.9 Myr’.
– – –
Geologic activity on Earth appears to follow a 27.5-million-year cycle, giving the planet a ‘pulse,’ according to a new study published in the journal Geoscience Frontiers. reporting.

“Many geologists believe that geological events are random over time. But our study provides statistical evidence for a common cycle, suggesting that these geologic events are correlated and not random,” said Michael Rampino, a geologist and professor in New York University’s Department of Biology, as well as the study’s lead author.

Over the past five decades, researchers have proposed cycles of major geological events—including volcanic activity and mass extinctions on land and sea—ranging from roughly 26 to 36 million years.

But early work on these correlations in the geological record was hampered by limitations in the age-dating of geologic events, which prevented scientists from conducting quantitative investigations.


solar-systemThe Helmholtz-Zentrum Dresden-Rossendorf (HZDR) research laboratory has been looking at some of the Talkshop-featured PRP papers, in particular those by Ian Wilson and Jan-Erik Solheim, plus others by names familiar to many Talkshoppers (Sharp, McCracken, Abreu, Scafetta, McIntosh etc.). It likes what it finds, describing Ian Wilson’s 2013 PRP paper, from which they cite his 11.07 and 193-year solar-planetary periods, as ‘highly instructive and recommendable’ (available via the PRP link above, or the one at the top of the Talkshop home page, or here). This is all something of a contrast to the original publishers, who washed their hands of all the PRP papers under pressure from the IPCC and/or its influential supporters. We may not agree entirely with all their interpretations of the data, but their approach is refreshing. 
H/T Lori
– – –
Solar physicists around the world have long been searching for satisfactory explanations for the sun’s many cyclical, overlapping activity fluctuations, says

In addition to the most famous, approximately 11-year “Schwabe cycle”, the sun also exhibits longer fluctuations, ranging from hundreds to thousands of years.

It follows, for example, the “Gleissberg cycle” (about 85 years), the “Suess-de Vries cycle” (about 200 years) and the quasi-cycle of “Bond events” (about 1500 years), each named after their discoverers.

It is undisputed that the solar magnetic field controls these activity fluctuations.



During a total solar eclipse, the Sun’s corona and prominences are visible to the naked eye [image credit: Luc Viatour / ]

Expecting a variable, researchers found a constant.
– – –
From traversing sand dunes in the Sahara Desert to keeping watch for polar bears in the Arctic, a group of solar scientists known as the “Solar Wind Sherpas” led by Shadia Habbal, have traveled to the ends of the Earth to scientifically observe total solar eclipses—the fleeting moments when the Moon completely blocks the Sun, temporarily turning day into night.

With the images, they’ve uncovered a surprising finding about the Sun’s wind and its wispy outer atmosphere—the corona—which is only visible in its entirety during an eclipse, says NASA (via

From more than a decade’s worth of total eclipse observations taken around the world, the team noticed that the corona maintains a fairly constant temperature, despite dynamical changes to the region that occur on an 11-year rotation known as the solar cycle.

Similarly, the solar wind—the steady stream of particles the Sun releases from the corona out across the solar system—matches that same temperature.



The obvious question being – why?

June 3, 2021: No it’s not your imagination. Noctilucent cloud (NLC) season really is getting longer. New data from NASA’s AIM spacecraft show the first NLCs of summer have been trending earlier since the spacecraft was launched in 2007. This plot prepared by Cora Randall of the University of Colorado’s Laboratory for Atmospheric and Space Physics shows the change:

Each little blue box shows the day of year when AIM’s CIPS sensor detected the first NLC of northern summer. “The season appears to be starting earlier, which is making it longer by about 5 days,” says Randall.

Interestingly, the season is not also ending later; it still stops in August. Nevertheless, the early start is giving sky watchers an extra 5 days a year of noctilucent clouds.

The first NLCs of the season typically appear inside the Arctic Circle. Then, they spin outward to lower latitudes–a process which is…

View original post 70 more words


Quote: ‘Pro tip for northern sky watchers: Look west 30+ minutes after sunset.’

May 27, 2021: Something unusual is happening at the top of Earth’s atmosphere. Noctilucent clouds (NLCs) are forming, and people are seeing them from the ground even though it is only May. Andy Stables sends this photo from the Isle of Skye, Scotland, taken May 26th:

The electric-blue ripples “were clearly visible to the unaided eye,” says Stables. “This is the earliest I have ever seen them here in Scotland.”

NLCs are Earth’s highest clouds. Seeded by meteoroids, they float at the edge of space about 83 km above the ground. The clouds form when summertime wisps of water vapor rise up to the mesosphere, allowing water to crystallize around specks of meteor smoke. The season for bright naked-eye NLCs typically stretches from June through August.

This year NLCs are getting an early start. We’ve already received multiple reports of sightings in Europe from latitudes as low as…

View original post 132 more words


The Moon in front of Earth [credit: NASA]

A recurring pattern over the period of the Sun’s 22~year Hale cycle (two magnetic polarity reversals) seems to have emerged. One outcome is said to be ‘a higher likelihood of severe space weather late in the current solar cycle between 2026 and 2030.’
– – –
Planned missions to return humans to the Moon need to hurry up to avoid hitting one of the busiest periods for extreme space weather, according to scientists conducting the most in-depth ever look at solar storm timing.

Scientists at the University of Reading studied 150 years of space weather data to investigate patterns in the timing of the most extreme events, which can be extremely dangerous to astronauts and satellites, and even disrupt power grids if they arrive at Earth, says

The researchers found for the first time that extreme space weather events are more likely to occur early in even-numbered solar cycles, and late in odd-numbered cycles—such as the one just starting.


The last time we took a look at Leif Svalgaard’s SC25 prediction in 2018, he was predicting a peak amplitude of around 140SSN in 2024 according to the plot or (giving himself more latitude) “SC25 will be somewhere between SC24 and SC20, provided the Polar Field Precursor Relationship holds.”

This has been modified in his latest presentation on the subject. The peak amplitude has been revised downwards to 128+/-10SSN.


Extreme geomagnetic storms are now thought to occur about once every 45 years, or every four solar cycles, on average.

April 30, 2021: Imagine living in Florida. You’ll never see the Northern Lights … right? Actually, the odds may be better than you think. A new historical study just published in the Journal of Space Climate and Space Weather shows that great aurora storms occur every 40 to 60 years.

“They’re happening more often than we thought,” says Delores Knipp of the University of Colorado, the paper’s lead author. “Surveying the past 500 years, we found many extreme storms producing auroras in places like Florida, Cuba and Samoa.”

This kind of historical research is not easy. Hundreds of years ago, most people had never even heard of the aurora borealis. When the lights appeared, they were described as “fog,” “vapors”, “spirits”–almost anything other than “auroras.” Making a timeline 500 years long requires digging through unconventional records such as personal diaries, ship’s logs, local weather reports–often in languages that are foreign to…

View original post 371 more words

Talkshop readers will remember that as well as his work on modelling solar activity, Rick Salvador also built a planetary model to predict variation in Earth’s Length of Day (LOD). The model uses 13 frequencies derives from planetary and lunar motion to replicate changes in Earth’s spin rate.

Rick has retired from modelling now, so this is the final update on the model’s performance. The IERS LOD database was changed in early 2020, so the model performance update ends there. Over the last 4 years, Rick found that to keep it on track, he needed to add a -0.0006 second correction in June each year. The necessity for this is as yet unexplained and comments on possible reasons are encouraged.


Einstein’s Eclipse

Posted: March 23, 2021 by oldbrew in Astrophysics, Gravity, solar system dynamics

Some real science to remember.

March 22, 2021: On May 29, 1919, the Moon slid in front of the sun and forever altered our understanding of spacetime. It’s known as “Einstein’s Eclipse.” Using his newly-developed theory of relativity, the young German physicist predicted that the sun’s gravity should bend starlight–an effect which could only be seen during a total eclipse. More than 100 years later, Petr Horálek (ESO Photo Ambassador) and Miloslav Druckmüller (Brno University of Technology) have just released a stunning restoration of the photo that proved Einstein right:

The original picture was taken in May 1919 by astronomers Andrew Crommelin and Charles Rundle Davidson, who traveled from the Greenwich Observatory in London to the path of totality in Sobral, Brazil. They were part of a global expedition organized by Sir Arthur Eddington, who wanted to test Einstein’s strange ideas. Glass photographic plates from the expedition were typical of early 20th century astrophotography, colorless…

View original post 406 more words

Some carbonaceous chondrites from earlier finds [image credit: NASA]

This rare type of meteorite (less than 5% of all known falls) was also collected by the Japanese Hayabusa space probe from an asteroid in 2010, but these UK samples arrived free of charge. The linked report includes an interview with the ‘wobbly legs’ researcher who collected it.
– – –
Several rocky fragments have been recovered from the fireball that lit up the sky above southern England just over a week ago, reports BBC News.

They came down in the Winchcombe area of Gloucestershire.

A householder first alerted experts after noticing a pile of charred stone on his driveway. Other members of the public have since come forward with their own finds.

It’s 30 years since meteorite material was last retrieved in the UK.


A New Form of Space Weather: Earth Wind

Posted: February 12, 2021 by oldbrew in moon, solar system dynamics, wind

A water creation surprise here.

Feb. 12, 2021: The sun is windy. Every day, 24/7, a breeze of electrified gas blows away from the sun faster than a million mph. Solar wind sparks beautiful auroras around the poles of Earth, sculpts the tails of comets, and scours the surface of the Moon.

Would you believe, Earth is windy, too? Our own planet produces a breeze of electrified gas. It’s like the solar wind, only different, and it may have important implications for space weather on the Moon.

“Earth wind” comes from the axes of our planet. Every day, 24/7, fountains of gas shoot into space from the poles. The leakage is tiny compared to Earth’s total atmosphere, but it is enough to fill the magnetosphere with a riot of rapidly blowing charged particles. Ingredients include ionized hydrogen, helium, oxygen and nitrogen.

Once a month, the Moon gets hit by a blast of Earth wind. It…

View original post 408 more words

Ned Nikolov, Ph.D. Has written to me with news of the presentations he made at this years AMS meeting. It’s vital we get people to understand the implications of the discoveries he and Karl Zeller have made. With our western governments jumping aboard the ‘Green New Deal’ and ‘NetZero’ bandwagons, we will need to work hard to rise awareness of viable alternative hypotheses for ‘climate change’ and ‘global warming’ which better explain the phenomena we can measure around us. Ned and Karl’s work should be given proper attention, because it strives for universality and general application of physics solar system wide, rather then treating Earth as a ‘special case’.

Two studies presented at the American Meteorological Society’s 34th Conference on Climate Variability and Change in January 2021 employed a novel approach to identify the forcing of Earth’s climate at various time scales. The new method, never attempted in climate science before, relies on the fundamental premise that the laws of nature are invariant across spacetime.


Lagrange points in the Sun–Earth system (not to scale). A small object at L4 or L5 will hold its relative position [Credit: Xander89 @ Wikipedia]

More about Lagrange points here.
– – –
A recently discovered asteroid appears to be an Earth Trojan, orbiting a gravitationally stable area with only one other known occupant, says Sky & Telescope.

Trojans are asteroids gravitationally locked to stable Lagrange points either 60° ahead (L4) or behind (L5) the planets in their orbits around the Sun. 2020 XL5 was found around the L4 point.

Massive Jupiter has more than 9,000 Trojans.

In theory, Trojan orbits would be stable around every planet except Saturn, where Jupiter’s gravity pulls them away.



In a recent post we looked at the average daily sunspot numbers, finding that far from the claimed decades-long decline of solar strength, averages were high from 1933-2008 followed by a sharp decline in the recently-ended solar cycle 24.

This time the focus moves to another metric from the same source, Wikipedia’s List of solar cycles.

After the main table of data they introduce another one, stating:
The following table is instead divided into (unofficial) cycles starting and ending with a maximum, to give a better feel for the number of spotless days associated with each minimum.

For this short exercise the ‘Spotless days’ column of data will be split into two groups of six, comparing the overall average of each from the list.


What if … A Perfect CME Hit Earth?

Posted: January 22, 2021 by oldbrew in solar system dynamics

Are you sitting comfortably? Well, you might not be after reading this…

Jan. 21, 2021: You’ve heard of a “perfect storm.” But what about a perfect solar storm? A new study just published in the research journal Space Weather considers what might happen if a worst-case coronal mass ejection (CME) hit Earth. Spoiler alert: You might need a backup generator.

For years, researchers have been wondering, what’s the worst the sun could do? In 2014, Bruce Tsurutani (JPL) and Gurbax Lakhina (Indian Institute of Geomagnetism) introduced the “Perfect CME.” It would be fast, leaving the sun around 3,000 km/s, and aimed directly at Earth. Moreover, it would follow another CME, which would clear the path in front of it, allowing the storm cloud to hit Earth with maximum force.

None of this is fantasy. The Solar and Heliospheric Observatory (SOHO) has observed CMEs leaving the sun at speeds up to 3,000 km/s. And there are many documented cases of…

View original post 486 more words

Data courtesy of

Back in November it looked like solar cycle 25 was finally getting underway, with daily sunspot numbers peaking up to 80, and the 30 day Wolf number climbing over 30 in early December. Since then though, the Sun has relapsed into a low activity state.

This won’t come as any surprise to Talkshop followers, we’ve been saying that cycle 25 would be very low for most of the last decade. Our group research culminated in late 2013 with publication of Rick Salvador’s orbital resonance model in the journal ‘Pattern Recognition in Physics’. We provided an update on the validation of the model a while back, showing it has remained on track since publication.