Archive for the ‘atmosphere’ Category

Layers of Earth’s atmosphere

Some fairly advanced theorising here, but the possibilities look interesting. For example, could ‘resonant trapping’ exist?

Resonating oscillations of a planet’s atmosphere caused by gravitational tides and heating from its star could prevent a planet’s rotation from steadily slowing over time, according to new research by Caleb Scharf, who is the Director of Astrobiology at Columbia University.

His findings suggest that the effect is enhanced for a planet with an atmosphere that has been oxygenated by life, and the resulting ‘atmospheric tides’ could even act as a biosignature, reports



ASTROBIOLOGY NASA picked this article from the Many Worlds website, and by doing so endorsed the writer’s apparent belief in ‘heat-trapping gases’. But the “thought experiment” the science meeting was engaging in did not seem to include any reference to Nikolov and Zeller’s Universal Theory of Climate, which could have helped them out considerably.

What would happen if you switched the orbits of Mars and Venus? Would our solar system have more habitable worlds?

It was a question raised at the “Comparative Climatology of Terrestrial Planets III”; a meeting held in Houston at the end of August, writes Elizabeth Tasker.



The storm was so strong that the change in magnetic direction could be easily measured on a compass, as this 2013 article explains.

Ghosts and goblins, candle-lit jack o’lanterns and dark haunted houses, ominous screeching and maniacal laughter – these are some of the frightening fantasies we associate with Halloween.

But ten years ago during the Halloween of 2003, while children in costumes paraded door-to-door for treats, the Sun was playing its own tricks with planet Earth, says Directions Magazine.

The consequence: a solar-terrestrial nightmare became a scary reality.

The Halloween Storm

In mid-October 2003, a bundle of concentrated magnetic energy emerged from the Sun’s interior, forming a large sunspot, a site of seething activity. Enormous solar flares soon followed. Then, on October 28, the sunspot abruptly ejected a concentrated mass of electrically conducting solar wind, flinging it out into interplanetary space toward the Earth. Less than a day later, on October 29, a geomagnetic storm was initiated as the solar wind disrupted the Earth’s protective magnetosphere.

Over the next three days, the “Halloween magnetic storm” would evolve and grow to become one of the largest such storms in half a century.

Magnetic storms are global phenomena, and their effects can be easily seen around the world. During the Halloween storm, for example, magnetic direction in Alaska quickly changed by more than 20 degrees. In other words, the storm was so large that it could be measured with a simple compass.

The Halloween magnetic storm also produced spectacular aurora, with green phantom “northern lights” seen as far south as Texas and Florida.

The Impacts of this Storm

The USGS network of magnetic observatories monitored activity from the Halloween storm in collaboration with international partners. The storm played tricks on technological systems around the world, which scientists continue to analyze even today.

Continued here.

See also: The Halloween Storms: When Solar Events Spooked the Skies | GPS World

Descending air in the atmosphere rises in temperature as it is adiabatically compressed in the pressure gradient created by gravity acting on atmospheric mass. This has been known for centuries. However, the MET Office has decided to do away with this fundamental fact of physics in a short video it has produced.

Even their own website page on the Foehn effect (now safely screenshotted and web-cited) tells us:

“ foehn air… becomes warmer and drier on the leeside after it is compressed with descent due to the increase in pressure towards the surface.”


Grand Aletsch Glacier, Switzerland [Image credit: Wikipedia]

It’s not the conclusion some might be expecting…

Analysis of ice cores delivers continuous data for the first time on industrial soot from 1740 to today, reports HeritageDaily.

In the first half of the 19th century, a series of large volcanic eruptions in the tropics led to a temporary global cooling of Earth’s climate.

It was a natural process that caused Alpine glaciers to grow and subsequently recede again during the final phase of the so-called Little Ice Age.

This has now been proven by PSI researchers, on the basis of ice cores.


The Chill of Solar Minimum

Posted: September 28, 2018 by oldbrew in atmosphere, research, solar system dynamics, Temperature

Credit: NOAA

Researchers have found that the last time the thermosphere was rated ‘hot’ was around 2003 (see chart below). Now with a deep solar minimum upon us, the obvious question is: what effect might this have on our planet as a whole?

Sept. 27, 2018: The sun is entering one of the deepest Solar Minima of the Space Age, says Dr. Tony Phillips at Space Weather.

Sunspots have been absent for most of 2018, and the sun’s ultraviolet output has sharply dropped. New research shows that Earth’s upper atmosphere is responding.

“We see a cooling trend,” says Martin Mlynczak of NASA’s Langley Research Center. “High above Earth’s surface, near the edge of space, our atmosphere is losing heat energy. If current trends continue, it could soon set a Space Age record for cold.”


Old town, Frankfurt

Not just older diesels are implicated, but some petrol cars too. The ban would apply to certain areas within the city only, at the initial stage. Tougher rules would come in later.

First Hamburg and Stuttgart, now the diesel ban has come for Germany’s financial capital. A new ban could affect a quarter of vehicles in Frankfurt, as well as countless commuters, says

The western German city of Frankfurt must introduce a ban on diesel vehicles, a court ruled on Wednesday.

Environmental activists had sued the state of Hesse for allowing Germany’s financial capital to exceed maximum safe levels of nitrogen oxide.


Saturn’s north polar vortex and hexagon along with its expansive rings. The hexagon is wider than two Earths [image credit: NASA]

Another case of observing something that wasn’t thought possible. As the report notes: ‘The presence of a hexagon way up in Saturn’s northern stratosphere, hundreds of kilometres above the clouds, suggests that there is much more to learn about the dynamics at play in the gas giant’s atmosphere.’

The long-lived international Cassini mission has revealed a surprising feature emerging at Saturn’s northern pole as it nears summertime: a warming, high-altitude vortex with a hexagonal shape, akin to the famous hexagon seen deeper down in Saturn’s clouds.

This suggests that the lower-altitude hexagon may influence what happens up above, and that it could be a towering structure spanning hundreds of kilometres in height, reports


Credit: NASA

Temporary weather effects and more. For more background, there are several extra links in the original ScienceNews article.

A year after the total solar eclipse of 2017, scientists are still pondering the mysteries of the sun.

It’s been a year since the total solar eclipse of August 21, 2017, captured millions of imaginations as the moon briefly blotted out the sun and cast a shadow that crisscrossed the United States from Oregon to South Carolina.

“It was an epic event by all measures,” NASA astrophysicist Madhulika Guhathakurta told a meeting of the American Geophysical Union in New Orleans in December. One survey reports that 88 percent of adults in the United States — some 216 million people — viewed the eclipse either directly or electronically.


Nir Shaviv is co-author along with Henrik Svensmark and others of a major new paper in Nature Communications titled Increased ionization supports growth of aerosols into cloud condensation nuclei. He has a write up at his Sciencebits blog. Here’s the introduction:

Our new results published today in nature communications provide the last piece of a long studied puzzle. We finally found the actual physical mechanism linking between atmospheric ionization and the formation of cloud condensation nuclei. Thus, we now understand the complete physical picture linking solar activity and our galactic environment (which govern the flux of cosmic rays ionizing the atmosphere) to climate here on Earth though changes in the cloud characteristics. In short, as small aerosols grow to become cloud condensation nuclei, they grow faster under higher background ionization rates. Consequently, they have a higher chance of surviving the growth without being eaten by larger aerosols. This effect was calculated theoretically and measured in a specially designed experiment conducted at the Danish Space Research Institute at the Danish Technical University, together with our colleagues Martin Andreas Bødker Enghoff and Jacob Svensmark.


Figure 4: The correlation between the linearly detrended sea level measured using satellite altimetry (blue dots) and a model fit which includes just two components: The sun and el Niño southern oscillation. The excellent fit implies that the two components are by far the dominant source of sea level change on short time scales


It has long been known that solar variations appear to have a large effect on climate. This was already suggested by William Herschel over 200 years ago. Over the past several decades, more empirical evidence have unequivocally demonstrated the existence of such a link, as exemplified in the examples in the box below.



Nairobi traffic

It’s debatable whether air quality was top class in many African cities before the arrival of these old diesels, but they aren’t doing much to improve it.

As emission regulations become stronger for new vehicles in industrialized countries, cars as old as 25 years no longer able to meet emission standards are being exported to Africa.

Air quality is suffering as a result, reports

Any child playing at the Uhuru garden — a recreation park in the middle of the Kenyan capital Nairobi — is oblivious to the health dangers in the air around him or her. But that air is laden with toxic pollutants, which have become a leading cause of respiratory disease in Kenyan cities.


Clouds are climate wildcards says This study focuses on tropical convective clouds. It seems that ‘the product of the number of clouds and their perimeter remains constant, a mathematical law known as scale invariance.’

Quoting from the ‘plain language summary’ of the study:
‘Narrowing uncertainty in forecasts of climate change has been hindered by the difficulty of representing the extraordinary complexity of clouds. Here, we show how the numbers and sizes of clouds, and their total amount, can be derived thermodynamically knowing just the atmospheric temperature and humidity profile.’

As usual an assumption of future warming is built-in, but we have to live with that approach even if we question it.

Take a look at the clouds, if there are any in your sky right now. Watch the billows, the white lofty tufts set against the blue sky. Or, depending on your weather, watch the soft grey edges smear together into blended tones that drag down through the air to the ground.

They’re an inspiration to most of us, but a nightmare for climate scientists. Clouds are exceptionally complex creatures, and that complexity makes it difficult to predict how and where they’ll form—which is unfortunate, since those predictions are essential to understanding precipitation patterns and how our climate will change in the future.



The apparent length of day on Venus (116.75 days) is nothing like its rotation time (~243 days), due to its retrograde spin. It can be stated as the time in which the sum of the number of Venus orbits (~0.52) and spins (~0.48) in the period equals 1.

As ScienceNewsforStudents reports, the thick atmosphere on Venus can change by a few minutes every day how long it takes the planet to rotate.

Time gets tricky on Venus. The planet has extremely thick air, which flows much more rapidly than the rate at which the solid planet spins.

As that thick atmosphere pushes against the planet’s mountains, it can change how quickly Venus spins, scientists now report.


One of the points made here is that ‘cleaner air has resulted in more visible radiation warming of the oceans, not CO2’.

CO2 is Life


We have mentioned countless times on this blog that the warming oceans are evidence that CO2 is not the cause of global warming. To understand the climate you must first understand the oceans. The oceans control the global climate. As the oceans warm, they warm and alter the humidity of the atmosphere above them. The problem is, as we have pointed out countless times, CO2’s only defined mechanism by which to affect climate change is through the thermalization of LWIR between 13 and 18µ.

LWIR between 13 and 18µ doesn’t penetrate or warm the oceans. Visible radiation, mainly from the high energy blue end of the spectrum does. CO2 is transparent to incoming visible radiation. The energy stored in the atmosphere and land is insignificant when compared to the oceans. The oceans contain 2,000x the energy of the atmosphere, so small changes to the oceans can mean big changes…

View original post 742 more words

Dutch Parliament buildings [credit: Wikipedia]

To what extent can courts tell governments what so-called ‘climate policies’ they should be adopting? Isn’t there a burden of proof in such cases? Appeal verdict awaited – eventually.

The Dutch government on Monday appealed against a landmark 2015 court ruling which ordered it to slash greenhouse gases by a quarter by 2020, reports

“The current government is already extraordinarily active in terms of climate,” lawyer Bert-Jan Houtzagers told the Hague Appeals Court.


Antarctic sea ice [image credit: BBC]

Have scientists been looking through the wrong end of the telescope, so to speak, regarding ice ages theory?

Ancient rainfall records stretching 550,000 years into the past may upend scientists’ understanding of what controls the Asian summer monsoon and other aspects of the Earth’s long-term climate, says EurekAlert.

Milankovitch theory says solar heating of the northernmost part of the globe drives the world’s climate swings between ice ages and warmer periods.

The new work turns Milankovitch on its head by suggesting climate is driven by differential heating of the Earth’s tropical and subtropical regions.


Wavy jet stream
[image credit: BBC]

This could be a step forward in unravelling the whys and wherefores of the phenomenon of jet stream blocking.

The sky sometimes has its limits, according to new research from two University of Chicago atmospheric scientists.

A study published May 24 in Science offers an explanation for a mysterious and sometimes deadly weather pattern in which the jet stream, the global air currents that circle the Earth, stalls out over a region, reports

Much like highways, the jet stream has a capacity, researchers said, and when it’s exceeded, blockages form that are remarkably similar to traffic jams—and climate forecasters can use the same math to model them both.


Credit: [click to enlarge]

This is on similar lines to the ongoing studies of Nikolov & Zeller, featured here at the Talkshop on several occasions. The ‘standard’ tropopause pressure of ~0.1 bar is an interesting factor.

By looking at the temperature of every planet with sufficient atmospheres, we see temps rise along with atmospheric pressure, and not from a trace gas, says Alan Siddons at ClimateChangeDispatch.

Early in the 19th century, scientists began to speculate that the Earth, surrounded by the frigid vacuum of space, was habitable because its atmosphere contained special molecules like CO₂ and water vapor, molecules that can absorb heat rays emanating from the Earth and thereby trap its heat.

That the Earth was warmer than one might expect was apparently confirmed when Kirchhoff’s blackbody concept was adopted.