Posts Tagged ‘solar’

Variation in solar activity during a recent sunspot cycle [credit: Wikipedia]


This seems worth another airing in the face of today’s insistent, but evidence-light, claims from climate obsessives that the world’s present and future weather is going to be largely determined by human activities.

If the energy from the sun varies by only 0.1 percent during the 11-year solar cycle, could such a small variation drive major changes in weather patterns on Earth? – asks Universe Today.

Yes, say researchers from the National Center for Atmospheric Research (NCAR) who used more than a century of weather observations and three powerful computer models in their study.

They found subtle connections between solar cycle, the stratosphere, and the tropical Pacific Ocean that work in sync to generate periodic weather patterns that affect much of the globe.

Scientists say this will help in predicting the intensity of certain climate phenomena, such as the Indian monsoon and tropical Pacific rainfall, years in advance.

(more…)

The linked article contains more video material and images.
– – –
In February 2020, NASA’s Solar Dynamics Observatory—SDO—is celebrating its 10th year in space, reports Phys.org.

Over the past decade the spacecraft has kept a constant eye on the sun, studying how the sun creates solar activity and drives space weather—the dynamic conditions in space that impact the entire solar system, including Earth.

Since its launch on Feb. 11, 2010, SDO has collected millions of scientific images of our nearest star, giving scientists new insights into its workings.

SDO’s measurements of the sun—from the interior to the atmosphere, magnetic field, and energy output—have greatly contributed to our understanding of our closest star.

SDO’s images have also become iconic—if you’ve ever seen a close up of activity on the sun, it was likely from an SDO image.

SDO’s long career in space has allowed it to witness nearly an entire solar cycle—the sun’s 11-year cycle of activity.

Here are a few highlights of SDO’s accomplishments over the years.

A Coronal Mass Ejection with the surrounding cloud visible (1999) [image credit: NASA/ESA]


Even non-catastrophic solar storms can be troublesome, such as one in 1967 which nearly triggered nuclear war, according to evidence from retired U.S. Air Force personnel.
– – –
A ‘great’ space weather super-storm large enough to cause significant disruption to our electronic and networked systems occurred on average once in every 25 years, according to a new joint study by the University of Warwick and the British Antarctic Survey.

By analysing magnetic field records at opposite ends of the Earth (UK and Australia), scientists have been able to detect super-storms going back over the last 150 years, reports Phys.org.

This result was made possible by a new way of analysing historical data, pioneered by the University of Warwick, from the last 14 solar cycles, way before the space age began in 1957, instead of the last five solar cycles currently used.

(more…)

Here we learn that the solar wind ‘has a sort of internal heater’, which may be short on scientific explanation but sounds interesting as far as it goes.
– – –
There’s a wind that emanates from the sun, and it blows not like a soft whistle but like a hurricane’s scream, says Phys.org.

Made of electrons, protons, and heavier ions, the solar wind courses through the solar system at roughly 1 million miles per hour, barreling over everything in its path.

Yet through the wind’s roar, NASA’s Parker Solar Probe can hear small chirps, squeaks, and rustles that hint at the origins of this mysterious and ever-present wind.

Now, the team at the Johns Hopkins Applied Physics Laboratory, which designed, built, and manages the Parker Solar Probe for NASA, is getting their first chance to hear those sounds, too.

(more…)

Volcanic eruption


How good is the evidence for such a connection, and what theories do we have? Does a really low solar minimum – like now – make a difference? Here’s PW’s overview of its article.

Over the long term, the sun is the main driver of weather and climate on Earth and it is also directly connected to such phenomenon as the aurora borealis also known as the northern lights, upper atmospheric “high-latitude blocking”, and the influx of cosmic rays into Earth’s atmosphere, says Perspecta Weather.

The aurora borealis tends to occur more often during times of increased solar activity though they can actually take place at any time of a solar cycle.

(more…)

Sunspots set a Space Age Record

Posted: December 20, 2019 by oldbrew in Solar physics
Tags: ,

.
.
The switch to solar cycle 25 must be getting close, if not here already.

Spaceweather.com

Dec. 17, 2019: Solar Minimum is becoming very deep indeed. Over the weekend, the sun set a Space Age record for spotlessness. So far in 2019, the sun has been without sunspots for more than 271 days, including the last 34 days in a row. Since the Space Age began, no other year has had this many blank suns.

Above: The blank sun on Dec. 16, 2019. Credit: NASA/Solar Dynamics Observatory

The previous record-holder was the year 2008, when the sun was blank for 268 days. That was during the epic Solar Minimum of 2008-2009, formerly the deepest of the Space Age. Now 2019 has moved into first place.

Solar Minimum is a normal part of the 11-year sunspot cycle. The past two (2008-2009 and 2018-2019) have been long and deep, making them “century-class” Minima. To find a year with more blank suns, you have to go back to…

View original post 166 more words

The article also explains why ‘understanding forced reconnection can help modelers better predict when disruptive high-energy charged particles might come speeding at Earth.’

NASA’s Solar Dynamics Observatory has observed a magnetic explosion the likes of which have never been seen before, reports Phys.org.

In the scorching upper reaches of the Sun’s atmosphere, a prominence—a large loop of material launched by an eruption on the solar surface—started falling back to the surface of the Sun.

But before it could make it, the prominence ran into a snarl of magnetic field lines, sparking a magnetic explosion.

(more…)

Jupiter-Saturn-Earth orbits chart


This was just about to go live when a new idea involving the Sun cropped up, now added to the original. The source data is from NASA JPL as usual.

From our 2015 de Vries post we saw that the 2503 year period, which the numbers were based on, consisted of 85 Saturn and 211 Jupiter orbits [see chart on the right].

Taking Saturn’s orbit period, and using JPL’s planetary data we find:
10755.7 days * 85 = 914234.5 days

The lunar year is 13 lunar orbits of Earth:
27.321582 days * 13 = 355.18056 days

914234.5 / 355.18056 = 2573.9992 (2574) = 13 * 198 lunar years

Number of beats of Saturn and the lunar year = 2574 – 85 = 2489 in 2503 years.
2503 – 2489 = 14
Number of Jose cycles in 2503 years = 14 (= 126 Jupiter-Saturn conjunctions, i.e. 9 J-S * 14).

Therefore the difference per Jose cycle between ‘Saturn-lunar year’ beats and Earth years is exactly one.

(more…)

The Sun from NASA’s SDO spacecraft


Making some progress anyway – and finding resonance is a key factor.

A Queen’s University Belfast scientist has led an international team to the ground-breaking discovery of why the Sun’s magnetic waves strengthen and grow as they emerge from its surface, which could help to solve the mystery of how the corona of the Sun maintains its multi-million degree temperatures, says Phys.org.

For more than 60 years observations of the Sun have shown that as the magnetic waves leave the interior of the Sun they grow in strength but until now there has been no solid observational evidence as to why this was the case.

The corona’s high temperatures have also always been a mystery. Usually the closer we are to a heat source, the warmer we feel.

However, this is the opposite of what seems to happen on the Sun—its outer layers are warmer than the heat source at its surface.

(more…)

Solar train – OK for millionaires?

Posted: December 1, 2019 by oldbrew in innovation, Travel
Tags: ,

A bit of fun for tourists, but an electric bus would have been a lot cheaper.


[4mins.25 secs. video]

This is considered to be one of the best preserved ancient stone monuments in Britain, although research into it seems to have been minimal. It can be found near Wigtown in the far south-west of Scotland.

Note the specific solar alignments of the three central stones, and the lunar significance of its circle of nineteen megaliths – thought to represent the lunar nodal cycle of 18.6 years, according to the commentary (or possibly the 19 year Metonic cycle – or both?).

The Metonic cycle is described as ‘a period of almost exactly 19 years that is nearly a common multiple of the solar year and the synodic (lunar) month.’

Credit: Railfuture


Well, 10% solar-powered – that’s the target. Of course solar has its variables, mainly weather conditions and hours of daylight. So is this ‘solution’ worth the bother and cost, or not? The era of batteries on train locomotives has also arrived – see ‘Adding a third dimension – battery power’ here.

How many times have we looked at clever innovation and wondered why on earth no one thought of doing it before?

Often the simplest of ideas seem to lead to the most elegant of engineering solutions, says RailEngineer.

The truth is, of course, that invention is only half of the story. Sometimes the right meeting of minds must happen before a bright idea can become a reality.

To the best of our knowledge, the direct supply of solar power to rail traction systems has never been done, anywhere in the world.

(more…)


The two Voyager space probes, launched in 1977, are still delivering tales of the unexpected.

The boundary region between the sun’s sphere of influence and the broader Milky Way galaxy is complicated indeed.

Humanity’s second taste of interstellar space may have raised more questions than it answered, writes Mike Wall @ Space.com.

NASA’s Voyager 2 spacecraft popped free of the heliosphere — the huge bubble of charged particles that the sun blows around itself — on Nov. 5, 2018, more than six years after the probe’s pioneering twin, Voyager 1, did the same.

The mission team has now had some time to take stock of Voyager 2’s exit, which occurred in the heliosphere’s southern hemisphere (as opposed to Voyager 1, which departed in the northern hemisphere).

In a series of five papers published online today (Nov. 4) in the journal Nature Astronomy, the researchers reported the measurements made by the probe as it entered interstellar space.

(more…)

.
.
What, if anything, might this mean for the coming Northern Hemisphere winter?

Spaceweather.com

Oct. 3, 2019: Solar Minimum is underway, and it’s a deep one. Sunspot counts suggest it is one of the deepest minima of the past century. The sun’s magnetic field has become weak, allowing extra cosmic rays into the solar system. Neutron monitors at the Sodankyla Geophysical Observatory in Oulu, Finland, show that cosmic rays are percentage points away from a Space Age record:

crinfo2

Researchers at the Sodankyla Geophysical Observatory have been monitoring cosmic rays since 1964. When cosmic rays hit Earth’s atmosphere, they produce a spray of secondary particles that rain down on Earth’s surface. Among these particles are neutrons. Detectors in Oulu count neutrons as a proxy for cosmic rays.

As the top panel shows, cosmic rays naturally wax and wane with the 11-year solar cycle. During Solar Maximum cosmic rays are weak; during Solar Minimum they are strong. The Space Age record for cosmic rays was set…

View original post 159 more words

Credit: reference.com


There are many reasons NASA is pursuing the Artemis mission to land astronauts on the moon by 2024: It’s a crucial way to study the moon itself and to pave a safe path to Mars, says Phys.org.

But it’s also a great place to learn more about protecting Earth, which is just one part of the larger Sun-Earth system.

Heliophysicists—scientists who study the Sun and its influence on Earth—will also be sending up their own NASA missions as part of Artemis. Their goal is to better understand the complex space environment surrounding our planet, much of which is driven by our Sun.

(more…)


H/T The Global Warming Policy Forum (GWPF).

An interview with Professor Valentina Zharkova on the effect of solar activity on terrestrial climate – from Conversations That Matter, with Stuart McNish.

The sun is going through a stage known as a solar or Maunder Minimum. This is where the solar activity that ignites solar flares or sun spots has decreased.

It’s a normal cycle and one that has been linked to the mini ice age that lasted more than 50 years starting in the mid-1600s.

(more…)


Thanks to Ian Wilson for introducing us to his new paper, which is part three of the planned four-part series. The paper can be downloaded from The General Science Journal here. Abstract below.

Abstract

The best way to study the changes in the climate “forcings” that impact the Earth’s mean atmospheric temperature is to look at the first difference of the time series of the world-mean temperature, rather than the time series itself.

Therefore, if the Perigean New/Full Moon cycles were to act as a forcing upon the Earth’s atmospheric temperature, you would expect to see the natural periodicities of this tidal forcing clearly imprinted upon the time rate of change of the world’s mean temperature.

Using both the adopted mean orbital periods of the Moon, as well as calculated algorithms based upon published ephemerides, this paper shows that the Perigean New/Full moon tidal cycles exhibit two dominant periodicities on decadal time scales.

(more…)

A Summer without Sunspots

Posted: September 28, 2019 by oldbrew in Solar physics
Tags: ,

.
.
Solar cycle 24 – going, going…

Spaceweather.com

Sept. 23, 2019: Could northern summer 2019 go down in history as “the summer without sunspots”? From June 21st until Sept 22nd, the sun was blank more than 89% of the time. During the entire season only 6 tiny sunspots briefly appeared, often fading so quickly that readers would complain to Spaceweather.com, “you’ve labeled a sunspot that doesn’t exist!” (No, it just disappeared.) Not a single significant solar flare was detected during this period of extreme quiet.

The sun on Sept. 22, 2019–as blank as a billiard ball. Credit: NASA/SDO

This is a sign that Solar Minimum is underway and probably near its deepest point. For 2019 overall (January through September), the sun has been blank 72% of the time, comparable to annual averages during the century-class Solar Minimum of 2008 (73%) and 2009 (71%). The current Solar Minimum appears to be century-class as well, meaning you have to go…

View original post 265 more words


Obsessing about tiny percentages of trace gases in the atmosphere may be a popular sport in some quarters these days, but it’s an unproductive one.

Political and corporate leaders gathered for the climate week in New York City have urged significant action to fight global warming, writes Dr. Shaviv in the Epoch Times.

But, given the high costs of the suggested solutions, could it be that the suggested cure is worse than the disease?

As a liberal who grew up in a solar house, I have always been energy-conscious and inclined toward activist solutions to environmental issues.

I was therefore extremely surprised when my research as an astrophysicist led me to the conclusion that climate change is more complicated than we are led to believe.

The disease is much more benign, and a simple palliative solution lies in front of our eyes.

(more…)

Solar wind and Earth [credit: NASA]


H/T Tallbloke

This 2017 Chinese study is here.

Below is the Summary — obviously the full info and graphics can be viewed via the link.
– – –
Many studies presented that solar variability does play a significant role in affecting the Earth’s climate change. Almost all of previous studies focused on the effects of solar total irradiation energy.

As the second major source, the solar wind energy flux exhibits more significant long-term variations, but its effect has been rarely concerned. Although the energy content of solar wind energy flux is of 4-5 orders lower than that of irradiation energy, its long-term variation is much more significant.

(more…)