Archive for the ‘Cycles’ Category

Image credit: interactivestars.com


Not exactly a new idea, but worth pursuing. Given the present feverish pursuit of supposedly climate-related policies that attempt to counter imagined human-caused effects, all known aspects of natural variation must be highlighted and included in models.
– – –
New analysis suggests that the Moon might be an unappreciated factor in climate change and, according to researchers from the Universities of East Anglia and Reading, its influence “cannot be discounted as an important driver of multidecadal variability of global temperature.”

It’s a suggestion that is bound to prompt debate and a possible reassessment of the relative influence of human factors on climate change in the past and the future when the lunar effect is included, says Dr. David Whitehouse @ Net Zero Watch.

It arises from the so-called lunar nodal cycle of 18.6 years caused by variations in the angle of the Moon’s orbital plane. During this period the Moon’s orbit “wobbles” between plus or minus 5 degrees relative to the Earth’s equator.

(more…)

Solar flare erupting from a sunspot [image credit: space.com]


Who knew!? – asks ScienceAlert. The article links to an interesting new paper on solar cycles, which makes some predictions for the current SC 25 (see section 3.2: Forecasting Using the Solar Unit Cycle). One of those is that it should end in October 2031 ± 9 months, and the authors go on to suggest forthcoming NASA and ESA missions make it probable that ‘Cycle 25 will be the last solar activity cycle that is not fully understood.’
– – –
Something weird is going on with the Sun.

So far, almost every day in 2022 it has erupted in flares and coronal mass ejections, some of which were the most powerful eruptions our star is capable of.

By itself, an erupting Sun is not weird. It erupts regularly as it goes through periods of high and low activity, in cycles that last roughly 11 years.

The current activity is significantly higher than the official NASA and NOAA predictions for the current solar cycle, and solar activity has consistently exceeded predictions as far back as September 2020.

But a solar scientist will tell you that even this isn’t all that weird.

(more…)


When observations show modellers ‘the opposite of what their best computer model simulations say should be happening with human-caused climate change’, it’s surely time to revisit their assumptions. Meanwhile, much head-scratching.
– – –
Something weird is up with La Nina, the natural but potent weather event linked to more drought and wildfires in the western United States and more Atlantic hurricanes, says Phys.org.

It’s becoming the nation’s unwanted weather guest and meteorologists said the West’s megadrought won’t go away until La Nina does.

The current double-dip La Nina set a record for strength last month and is forecast to likely be around for a rare but not quite unprecedented third straight winter. And it’s not just this one.

(more…)

A reconstruction of the Anglian ice sheet in Precambrian North London (credit: BBC / The Natural History Museum, London)


They claim this solves the so-called 100,000 year problem described by Wikipedia:
‘The 100,000-year-problem refers to the lack of an obvious explanation for the periodicity of ice ages at roughly 100,000 years for the past million years, but not before, when the dominant periodicity corresponded to 41,000 years. The unexplained transition between the two periodicity regimes is known as the Mid-Pleistocene Transition, dated to some 800,000 years ago.’ [41,000 years being the approximate obliquity cycle period]

– – –
In a new study published today in the journal Science, the team from Cardiff University has been able to pinpoint exactly how the tilting and wobbling of the Earth as it orbits around the Sun has influenced the melting of ice sheets in the Northern Hemisphere over the past 2 million years or so.

Scientists have long been aware that the waxing and waning of massive Northern Hemisphere ice sheets results from changes in the geometry of Earth’s orbit around the Sun, says Phys.org.

There are two aspects of the Earth’s geometry that can influence the melting of ice sheets: obliquity and precession.

(more…)

Sunspots [image credit: NASA]


The Sun may still have a surprise or two for solar cycle 25 theorists, but what we hear is: “I believe this will likely be the best forecast to come out of one of the NOAA/NASA Cycle prediction panels.” The article below doesn’t include the question mark in its headline.
– – –
The Sun is waking up, says Sky and Telescope.

In recent weeks, NASA has announced X-class solar flares, observers have seen large sunspot groups with the unaided eye, and online services have issued multiple aurora alerts even for mid-latitudes.

After years of quiescence — the Sun was more often spotless than not in 2018, 2019, and 2020 — the change of pace is exciting solar observers.

(more…)

Arctic sea ice [image credit: cbc.ca]


The researchers find ‘a significantly declining AA effect on the millennial time scale’ — but then attempt to link that to anthropogenic forcing in recent times, according to the article at least. That seems illogical if the argument is that humans are playing a part. In any case if the effect has been shown to occur over at least a millennium, that in itself casts doubt on claims that humans must be the prime (or any) cause of the most recent observed changes.
– – –
The recent amplified warming in the Arctic during the last decades has received much attention, says Phys.org.

But how Arctic amplification (AA) has varied on longer time scales and what drives these variations remain unclear.

Recently, a study has provided a new perspective on the AA effect during the past millennium based on the best available paleoclimate data and novel data assimilation methods.

(more…)

.
.
Trend or blip? The former looks more likely at the moment, but the sun can cause surprises.

Spaceweather.com

April 5, 2022: New sunspot counts from NOAA confirm that Solar Cycle 25 is racing ahead of the official forecast–and the gap is growing:

See the complete labeled plot or play with an interactive version from NOAA

Sunspot counts have now exceeded predictions for 18 straight months. The monthly value at the end of March was more than twice the forecast, and the highest in nearly 7 years.

The “official forecast” comes from the Solar Cycle Prediction Panel, a group of scientists representing NOAA, NASA and International Space Environmental Services (ISES). The Panel predicted that Solar Cycle 25 would peak in July 2025 as a relatively weak cycle, similar in magnitude to its predecessor Solar Cycle 24. Instead, Solar Cycle 25 is shaping up to be stronger.

In March 2022, the sun produced 146 solar flares, including one X-flare and 13 M-flares. Auroras were sighted as far south…

View original post 38 more words

.
.
Solar cycle 25 is about to reach the interesting stage, when we find out what it’s really made of.

Spaceweather.com

March 23, 2022: Solar Cycle 25 is intensifying–and Earth’s upper atmosphere is responding.

“The Thermosphere Climate Index (TCI) is going up rapidly right now,” reports Linda Hunt of Science Systems and Applications, Inc. “It has nearly tripled in the past year.”

TCI is a number published daily by NASA, which tells us how hot Earth’s upper atmosphere is. The thermosphere, the very highest layer of gas, literally touches space and is a sort of “first responder” to solar activity. Hunt created this plot showing how TCI has unfolded during the last 7 solar cycles.  Solar Cycle 25 (shown in blue) is just getting started:

“So far Solar Cycle 25 is well ahead of the pace of Solar Cycle 24,” notes Hunt. If this trend continues, the thermosphere could soon hit a 20-year high in temperature.

Before we go any farther, a word of caution: This does not mean Earth is…

View original post 198 more words

Europe in 1328 [image credit: Wikipedia]


Echoes of the Medieval Warm Period here? Long before the spectre of fossil fuel emissions was put forward as a possible climatic factor of course. We already covered some of this here, but as this is a new article let’s have another go.
– – –
LEIPZIG, Germany — Is weather history repeating itself? asks Study Finds.

The Arctic has experienced a steady increase in temperature since the 1980s, causing meteorological patterns that resemble 14th century Europe, research shows.

Scientists from the Leibniz Institutes for the History and Culture of Eastern Europe (GWZO) and Tropospheric Research (TROPOS) [studied] weather transitions in ancient Europe in the early 1300s and discovered droughts similar to the conditions in Europe in 2018.

(more…)

The Termination Event has Arrived

Posted: February 26, 2022 by oldbrew in Cycles, Solar physics, solar system dynamics
Tags:

.
.
According to a new theory of solar cycles, that is.

Spaceweather.com

Feb. 25, 2022: Something big just happened on the sun. Solar physicists Scott McIntosh (NCAR) and Bob Leamon (U. Maryland-Baltimore) call it “The Termination Event.”

“Old Solar Cycle 24 has finally died–it was terminated!” says McIntosh. “Now the new solar cycle, Solar Cycle 25, can really take off.”

The “Termination Event” is a new idea in solar physics, outlined by McIntosh and Leamon in a December 2020 paper in the journal Solar Physics. Not everyone accepts it–yet. If Solar Cycle 25 unfolds as McIntosh and Leamon predict, the Termination Event will have to be taken seriously.

Above: Predictions for Solar Cycle 25. Green would be average. Blue is the “official” prediction of a weak cycle. Red is a 2020 prediction based on the Termination Event.

The basic idea is this: Solar Cycle 25 (SC25) started in Dec. 2019. However, old Solar Cycle 24 (SC24) refused to go away. It…

View original post 345 more words

Solar Cycle 25 Update

Posted: January 12, 2022 by oldbrew in Cycles, data, solar system dynamics
Tags: ,

.
.
It’s still early in the cycle so let’s see what the next 1-2 years bring.

Spaceweather.com

Jan. 10, 2022: Solar Cycle 25 is heating up. New sunspot counts from NOAA confirm that the young solar cycle is outrunning the official forecast. You are here:

Actual sunspot counts have now exceeded predictions for 15 straight months. The monthly value at the end of December 2021 was more than twice the forecast, and the highest in more than 5 years.

The “official forecast” comes from the Solar Cycle Prediction Panel representing NOAA, NASA and International Space Environmental Services (ISES). Using a variety of leading indicators, the Panel predicted that Solar Cycle 25 would peak in July 2025 as a relatively weak cycle, similar in magnitude to its predecessor Solar Cycle 24. Instead, Solar Cycle 25 is shaping up to be stronger.

Sky watchers have already noticed the change. “We are definitely seeing the effects on the ground in the Arctic!” reports Chad Blakley of the Swedish tour guide…

View original post 197 more words

Ned Nikolov, Ph.D.
Dec 30, 2021

There has been a long-standing belief in Paleoclimatology that orbital variations (a.k.a. Milankovitch cycles) have been responsible for the initiation and/or duration of glacial cycles (Ice Ages) over the past 800 Ky. Milankovitch cycles are often referred to as a pacemaker of the Ice Ages. This myth dates back to 1970s, when sediment cores revealed a weak correlation in the frequency domain between Earth’s 41-ky obliquity (axial-tilt) cycle and the periodicity of Ice Ages during the early Pleistocene (Quaternary). However, in the late Pleistocene, the frequency of glacial cycles better match the Earth’s 100-ky eccentricity cycle, which further fueled the confusion. Yet, no one has been able to demonstrate a meaningful relationship between glacial cycles and any of the Earth’s 3 orbital parameters obliquity, eccentricity and precession or combination thereof on a linear time scale. A physical causation requires a strong correlation between parameters in the time domain, not the frequency domain!

(more…)


This won’t exactly be music to the ears of the climate alarmist tendency, which prefers to claim that people somehow dictate the course of climate variations.
– – –
The Sun’s energy affects our climate but its influence is often ignored as changes in its intensity are very small. Its effect might be subtle but over decadal periods it adds up to being significant as a series of recent papers show, says Net Zero Watch.

Scientists from the University of California, Irvine, the National Taiwan Normal University, and the Institute of Atmospheric Physics, of the Chinese Academy of Sciences, Beijing, find that the 11-year solar cycle has a significant correlation with sea surface temperature variations in the North-eastern Pacific.

They believe that the Sun’s influence is first seen and then amplified in the lower stratosphere, but it then alters the circulation in the troposphere which then affects the temperature of the ocean.

They note that the changes have a structure similar to that of the Pacific meridional mode – an interaction between trade winds and ocean evaporation which is an important trigger of the central Pacific (CP) type of the El Niño-Southern Oscillation (ENSO).

(more…)

Over at WUWT, Willis has been up to his usual trick of mangling data in a vain attempt to discredit scientists who find strong links between the Sun’s variation and Earth’s weather and climatic patterns. This time it’s Le Mouel et al who get the treatment in his ‘analysis’ of their 2010 paper “Solar forcing of the semi‐annual variation of length‐of‐day

As usual, Willis gets things upside down and then sets up a straw-man argument. He asks: “So … is there a correlation between sunspots and zonal wind speeds?” The answer to which is no, and the paper’s authors never claimed there was. However, as Fig 1 of Le Mouel et al’s paper shows, there is a strong anti-correlation between solar variation and the semi-annual variation of Length of Day (LOD) which is itself well correlated with changes in zonal wind speeds. For obvious reasons, Willis doesn’t show his readers Fig 1, reproduced here for your academic study.

Figure 1. Long‐term variations in the amplitude a of the semiannual oscillation in lod (in blue). A 4‐yr centered sliding
window is used. (a) Comparison of the semiannual amplitude of lod with the sunspot number WN (red); WN is both
reversed in sign and offset by one year
(see text). (b) Comparison of the detrended semiannual amplitude of lod (blue) with
the sunspot number WN (red); WN is reversed in sign and offset by one year. (c) Comparison of the semiannual amplitude
of lod (blue) with galactic cosmic ray flux GCR (red); GCR is neither reversed in sign nor offset (see text).
(more…)

Golden Gate Bridge from Fort Point, San Francisco

Inserting unnecessary theories into climate models, in order to invent ways of blaming human activities for the weather, seems to be making life more difficult for the modellers in terms of accuracy of results. Natural variation is getting in the way.
– – –
Over the past 40 years, winters in California have become drier, says Phys.org.

This is a problem for the region’s agricultural operations, as farmers rely on winter precipitation to irrigate their crops.

Determining if California will continue getting drier, or if the trend will reverse, has implications for its millions of residents.

But so far, climate models that account for changes in greenhouse gases and other human activities have had trouble reproducing California’s observed drying trends.

(more…)

Looking ahead to the days when children won’t know what central heating was? Probably not, although there’s a nod towards such scenarios here. Their 64x CO2 ‘experiment’ seems way over the top, but it’s only a model.
– – –
The distant past of Earth and potentially its future include extremely warm ‘hothouse’ climate states, but little is known about how the atmosphere of our planet behaves in such states, says Sci-News.

“If you were to look at a large patch of the deep tropics today, it’s always raining somewhere,” said Dr. Jacob Seeley, a postdoctoral researcher at Harvard University.

“But we found that in extremely warm climates, there could be multiple days with no rain anywhere over a huge part of the ocean.”

“Then, suddenly, a massive rainstorm would erupt over almost the entire domain, dumping a tremendous amount of rain. Then it would be quiet for a couple of days and repeat.”

(more…)

A year after I wrote the original ‘Why Phi’ post explaining my discovery of the Fibonacci sequence links between solar system orbits and planetary synodic periods here at the Talkshop in 2013, my time and effort got diverted into politics. The majority of ongoing research into this important topic has been furthered by my co-blogger Stuart ‘Oldbrew’ Graham. Over the last eight years he has published many articles here using the ‘Why Phi’ tag looking at various subsystems of planetary and solar interaction periodicities, resonances, and their relationships with well known climatic periodicities such as the De Vries, Hallstatt, Hale and Jose cycles, as well as exoplanetary systems exhibiting the same Fibonacci-resonant arrangements.

Recently, Stuart contacted me with news of a major breakthrough in his investigations. In the space of a few hours spent making his calculator hot, major pieces of the giant jigsaw had all come together and brought ‘the big picture’ into focus. In fact, so much progress has been made that we’re not going to try to put it all into a single post. Instead, we’ll provide an overview here, and follow it up with further articles getting into greater detail.

(more…)

.
.
The next year or two may give us a better idea of how solar cycle 25 is going to turn out, compared to other cycles.

Spaceweather.com

Oct. 21, 2021: Paolo Bardelli will never forget Oct. 21, 2001. “The sky over my hometown in Italy suddenly filled with intense red auroras,” he recalls. “This happened exactly 20 years ago today.”

Above: Red auroras over Tradate, Italy (latitude +45N), on Oct. 21, 2001. Photo credit: Cesare Guaita

A trip down memory lane: In 2001, Solar Cycle 23 was peaking and solar activity was very high. Strong flares were a daily occurance. On Oct. 19th, giant sunspot AR9661 erupted twice in quick succession, producing almost identical X1.6-class solar flares. The double blast hurled two bright CMEs toward Earth: CME #1, CME #2.

This is what the sun looked like that day:

The first CME took only two days to reach Earth. It was fast and potent. The storm cloud’s arrival on Oct. 21, 2001, ignited a severe geomagnetic storm (Kp=8). Solar wind speeds in the CME’s wake…

View original post 212 more words

Credit: NOAA

Researchers propose another weather/climate cycle.
– – –
A team of researchers with members affiliated with a large number of institutions across Japan has found that the Gulf stream and Kuroshio are synchronized on a decadal time scale, says Phys.org.

In their paper published in the journal Science, the group describes their study of decades of weather satellite data and the link between the two ocean currents.

Paola Cessi, with the Scripps Institution of Oceanography at the University of California, has published a Perspective piece on the work done by the team in Japan in the same journal issue.

(more…)

Mars_NASA

Mars [image credit: NASA]

Researchers say this could open the door to prediction of dust storms, which can seriously affect the solar panels of devices sent to investigate distant bodies like Mars. They also suggest such patterns may be common to all planetary atmospheres.
– – –
Annular modes explain much of the internal variability of Earth’s atmosphere but have never been identified as influential on other planets, says Sci-News.

On Earth, the regularity of storm systems in the middle latitudes is associated with what is called an annular mode — a variability in atmospheric flow that is unrelated to the cycle of seasons.

Annular modes affect the jet stream, precipitation, and cloud formations across the planet.

They explain up to one-third of the variability in wind-driven ‘eddies,’ including blizzards in New England and severe storm outbreaks in the Midwest.

In a new study, Yale University researchers Juan Lora and J. Michael Battalio found that annular modes on Titan and Mars are even more influential than they are on Earth.

(more…)