Archive for the ‘Cycles’ Category

Jupiter dominates the solar system

Jupiter dominates the solar system

By far the two largest bodies in our solar system are Jupiter and Saturn. In terms of angular momentum: ‘That of Jupiter contributes the bulk of the Solar System’s angular momentum, 60.3%. Then comes Saturn at 24.5%, Neptune at 7.9%, and Uranus at 5.3%’ (source), leaving only 2% for everything else. Jupiter and Saturn together account for nearly 85% of the total.

The data tell us that for every 21 Jupiter-Saturn (J-S) conjunctions there are 382 Jupiter-Earth (J-E) conjunctions and 403 Saturn-Earth (S-E) conjunctions (21 + 382 = 403).

Since one J-S conjunction moves 117.14703 degrees retrograde from the position of the previous one, the movement of 21 will be 21 x 117.14703 = 2460.0876, or 2460 degrees as a round number.

The nearest multiple of a full rotation of 360 degrees to 2460 is 2520 (= 7 x 360).
Therefore 21 J-S has a net movement of almost 60 degrees (2520 – 2460) from its start position.

(more…)

Click on image to enlarge

Click on image to enlarge

The Mars-Earth model is based on 34 Mars orbits. This equates to 64 years, which is 8². Since Venus makes 13 orbits of Earth in 8 years, we can easily add it to the model.
2,3,5,8,13 and 34 are Fibonacci numbers.

The story doesn’t end there, because as the diagram shows this results in a 3:4:7 relationship between the 3 sets of synodic periods. This was analysed in detail in a paper by astrophysicist Ian Wilson, featured at the Talkshop in 2013:

Ian Wilson: Connecting the Planetary Periodicities to Changes in the Earth’s Length of Day

(more…)

18 Inex cycles = 521 years [click to enlarge]

18 Inex cycles = 521 years
[click to enlarge]

In the wake of today’s solar eclipse and following an earlier post on the same topic, we have another perspective on the 521 year period that corresponds exactly to 18 Inex eclipse cycles.

An Inex corresponds to:
358 lunations (synodic months) = 28.94444 years
388.50011 draconic months
30.50011 eclipse years
Source: http://en.wikipedia.org/wiki/Inex

This means two Inex = 716 synodic months (358×2) and 777 draconic months (388.5×2).
This period will also be 61 eclipse or draconic years (777 – 716 or 30.5 x 2).

Each number in the diagram (below the top line) is derived from the numbers above it. Note that 18 Inex is the same period as 28 lunar nodal cycles. Both periods end at the lunar node they started at.

We can build on this, first by looking at data from a well-known science paper by Keeling & Whorf titled:
‘The 1,800-year oceanic tidal cycle: A possible cause of rapid climate change’

(more…)

Well known hockeyjockey Michael Mann has a post up on Huffpo, claiming the ‘hiatus’ or ‘plateau’ in global warming which he says doesn’t exist, only happened because oscillations. To prove this he introduces a new one, which he calls the NMO. I think it stands for Numerically Magical Obfuscation.

amo-pmo-nmo

NMO is derived from some twisty manipulation of the AMO (in blue) and the PMO (in green).

Just because Mann ‘invented’ the AMO doesn’t mean he gets to fiddle with the underlying data does it?

(more…)

Glimmers of understanding are percolating through into mainstream climate science, this time through the journal Climate Dynamics. I can’t remember if Marcia Wyatt and Judy Curry explicitly linked these oscillations in their stadium wave paper, but it’s more evidence that our cycles driven theory of climate is correct, and that the 1976-2005 warming was mostly a natural phenomenon. It is likely to be followed by a 2006-2035 cooling phase, possibly accentuated by the lowest solar activity levels in two centuries or more. Unfortunately, the luni-solar dimension to the multidecadal variability is not explored. Nonetheless, this paper represents some joined up thinking in terms of the cyclic chain of cause and effect which connects the northern hemisphere oceanic oscillations.

nao-amocfigs10-11

A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO
Cheng Sun, Jianping Li, Fei-Fei Jin Date: 06 Jan 2015
Abstract
Wavelet analysis of the annual North Atlantic Oscillation (NAO) index back to 1659 reveals a significant frequency band at about 60 years. Recent NAO decadal variations, including the increasing trend during 1960–1990 and decreasing trend since the mid-1990s, can be well explained by the approximate 60-year cycle.

(more…)

Santorini_moon2
What is a Saros? Quoting Wikipedia:
‘One saros period after an eclipse, the Sun, Earth, and Moon return to approximately the same relative geometry, a near straight line, and a nearly identical eclipse will occur’

‘It takes between 1226 and 1550 years for the members of a saros series to traverse the Earth’s surface from north to south (or vice-versa)’

Only a few lines to go … (more…)

Guest post from Peter Morecambe aka ‘Galloping Camel’

CLIMATE SCIENCE

The Kyoto Protocol

Elites around the world tend to believe that rising levels of CO2 in our atmosphere will cause catastrophic climate changes. Collectively they wield enough power to shape energy policies in many nations according to commitments laid down in the “Kyoto Protocol” and subsequent accords. It is interesting to compare the fate of the Kyoto Protocol based on the work of “Climate Scientists” such as Michael Mann with that of the Montreal Protocol based on the work of people like McElroy.

The Montreal Protocol essentially banned the production of Freon and similar compounds based on the prediction that this would reduce the size of the polar “Ozone Holes”. After the ban went into effect the size of the ozone holes diminished. This may mean that the science presented by McElroy and his cohorts was “Robust” or it may be dumb luck. Either way, McElroy has credibility and “Skeptics” are ridiculed. The Kyoto Protocol did not fare so well.

(more…)

venus-transit-2012Congratulations to Astrophysicist Ian Wilson who has had a new paper published at Pattern Recognition in Physics:
Discussion of this paper is going to be in the form of a workshop with specific objectives, and comments will be strictly moderated for relevance. The objectives will be announced by the main participants, Ian Wilson and Paul Vaughan, in their opening comments. Basically, unless you have something to contribute to the mathematical exposition, please sit this one out and watch.

This new peer-reviewed paper is available for (free) download at: http://www.pattern-recognition-in-physics.com/pub/prp-2-75-2014.pdf . This post reproduces the one at Ian’s blog.

(more…)

Scientist Paul Pukite has built a simple model involving Total Solar Irradiance , the Chandler wobble and the Quasi-Biennial Oscillation which does an impressive job of emulating the Southern Oscillation index from Darwin and Tahiti. Here’s the result:

pukite-soim

 

(more…)

Future low solar activity periods may cause cold winters in North America, Europe and Russia.
Jarl Ahlbeck – Abo Akademi University, Finland

Historically, low solar activity periods like the Dalton and Maunder Minima have been connected to cold winters in Europe. It seems very possible that the low solar activity forced areas of low pressures into a southern route or caused a negative Arctic Oscillation, AO, which in turn allowed cold air from the North Pole to flow across Europe. But can we obtain from real measurements that low solar activity really is able to do that?

temp-turku-AO

(more…)

Nicola Scafetta has emailed me to let us know he has a new paper in press which adresses critiques of our solar-planetary theory. I can’t do justice to presenting this work by illustrating this post with figures from the paper using my cellphone, but this a seriously impressive piece of work which Nicola generously shares with Talkshop readers via a link below the break. Nicola writes:

I just would like to share my latest paper
 
Nicola Scafetta, 2014. Discussion on the spectral coherence between planetary, solar and climate  oscillations: a reply to some critiques.

Astrophysics and Space Science in press.

http://link.springer.com/article/10.1007%2Fs10509-014-2111-8

For those who followed this research, the paper strongly rebuts some interesting critiques of the planetary theory of solar and climate variation made by Holm andCauquoin et al. that emerged in the literature during the first months of the 2014. (It also rebuts the very improper and unprofessional criticism made by Anthony Watts)

(more…)

Image

EVIDENCE OF LENGTH OF DAY (LOD) BIDECADAL VARIABILITY
CONCURRENT WITH THE SOLAR MAGNETIC CYCLES
Milivoje A. Vukcevic M.Sc
http://hal.archives-ouvertes.fr/hal-01071375/document

Abstract: Number of factors ranging from global atmospheric and oceans circulation to the plate tectonic movements affects the length of day (LOD) on different time scales. Existence of a coincidental or causal correlation between the solar magnetic oscillations and the secular LOD changes is demonstrated.

 

(more…)

GRL publishes letter on 18.6 year and SST

Posted: October 15, 2014 by tchannon in Cycles, ENSO, Ocean dynamics

A number of Talkshop regulars will raise eyebrows over this paper highlighted at Hockeyschtick  and perhaps like to learn about the references in a paywalled paper.

Role of the oceanic bridge in linking the 18.6-year modulation of tidal mixing and long-term SST change in the North Pacific

S. Osafune, S. Masuda and N. Sugiura
http://dx.doi.org/10.1002/2014GL061737

Abstract

The impact of the 18.6-year modulation of tidal mixing on sea surface temperature (SST) in the North Pacific is investigated in a comparative study using an ocean data synthesis system. We show that remote impact through a slow ocean response can make a significant contribution to the observed bidecadal variation in wintertime SST near the center of action of the Pacific Decadal Oscillation in the eastern Pacific. A comparative data synthesis experiment showed that the modified SST variation is amplified by bidecadal variation in the westerly wind. This relationship between SST and wind variations is consistent with an observed air–sea coupled mode in the extratropics, which suggests that a midlatitude air–sea interaction plays an important role in enhancing the climate signal of the 18.6-year modulation. This result supports the hypothesis that the 18.6-year tidal cycle influences long-term variability in climate; thus, knowledge of this cycle could contribute towards improving decadal predictions of climate.

(more…)

Paul Vaughan has suggested we hold a discussion on bi-decadal climatic variation, which exhibits quasi-cyclic patterns in various datasets. To get the ball rolling, Paul has kindly given some time to producing some very interesting plots which he has introduced across a few recent threads. This posts puts these in one place and acts as an invitation to those interested in a focussed discussion on the topic.

The Bidecadal Oscillation

Is it caused by the solar Hale Cycle as suggested by Tim Channon or is it caused by the velocity of the sun with respect to the solar system barycenter as suggested by Nicola Scafetta?

http://s18.postimg.org/74uty1eix/Bidecadal_SST_Sun_Velocity_Hale_Cycle.png

Bidecadal_SST_Sun_Velocity_Hale_Cycle
(more…)

One of the advantages of being billed by the most self important climate discussion website in the world as being a purveyor of ‘way out there theory’, is that I can publish whatever I like with no risk of further reputational damage. So when Stuart (Oldbrew) spotted that Miles Mathis has written a paper inspired by the same NASA material we have been discussing recently, I thought, why the hell not? Miles has been developing his ideas about a fundamental photon charge field underlying observed electro-magnetic phenomena for several years now, and has built up quite a corpus of work. This makes it difficult to absorb his stuff without clicking through to read his previous papers, and you soon find yourself in a labyrinth of ‘too many tabs’ open in your browser. Nonetheless, he is always entertaining, and thought provoking, even if it will be a while before we can see whether the predictions he makes based on his theory turn out to be correct. At least he has the guts to make definite predictions in the first place. None of your mealy mouthed ‘may’, ‘could’ and ‘perhaps’ ‘narrative scenario projections’ with Miles. He shoots fro the hip. Good lad. :)

mathis-sc-title

First published September 6, 2014

One of my readers sent me a link to wonderful new data from NASA. Although NASA and the rest of
the mainstream are not so good when it comes to theory, they are quite adept at compiling data, so I
have to thank them in this case. Without their numbers I could do nothing.

It has been known for a long time that the main Solar cycle is about 11 years, but that is just an
average. It goes from a minimum of about 9 years up to about 14 years. Although some theories have
been presented, the cause of all three numbers is unknown. I will show you the correct answer here.
The reason I so quickly hit on the right answer is that I knew where to look. In my other long paper on
Sun cycles (ice ages), I have already shown that Jupiter is the cause of the secondary variance. In this
case we will see that Jupiter is the cause of the primary variance.

(more…)

An important new(ish) paper from a team including Ken McCracken looks at the likely continuing slowdown in solar activity:

McC-etal-fig3

CharlesW. Smith1,2, K. G. McCracken3, Nathan A. Schwadron1,2, and Molly L. Goelzer2,4
1Physics Department, Space Science Center, University of New Hampshire, Durham, New Hampshire, USA, 2Institute for
the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire, USA, 3Institute of Physical
Science and Technology, University of Maryland, College Park, Maryland, USA, 4Department of Chemical Engineering,
University of New Hampshire, Durham, New Hampshire, USA

Abstract
Recent papers have linked the heliospheric magnetic flux to the sunspot cycle with good
correlation observed between prediction and observation. Other papers have shown a strong correlation
between magnetic flux and solar wind proton flux from coronal holes. We combine these efforts with
an expectation that the sunspot activity of the approaching solar minimum will resemble the Dalton or
Gleissberg Minimum and predict that the magnetic flux and solar wind proton flux over the coming decade
will be lower than at any time during the space age. Using these predictions and established theory, we
also predict record high galactic cosmic ray intensities over the same years. The analysis shown here is a
prediction of global space climate change within which space weather operates. It predicts a new parameter
regime for the transient space weather behavior that can be expected during the coming decade.

(more…)

Jennifer Marohasy has a new post “Revisionist Approach Destroys Information About Natural Cycles Embedded in Climate Data” where there is underlying interest for Talkshop readers. Mention of Ken Ring is perhaps not so good given a reputation for excessive claims, caveat emptor.

Her take is from an Australian perspective mentioning a Senator and the lead author is Australian.

Periodicities in mean sea-level fluctuations and climate change proxies: Lessons from the modelling for coastal management
R.G.V. Baker, , S.A. McGowan
BCSS, Faculty of Arts and Sciences, University of New England, Armidale, NSW 2351, Australia
Available online 12 July 2014

Elsevier so it is paywalled http://dx.doi.org/10.1016/j.ocecoaman.2014.05.027

(more…)

Paul’Vaughan posted a link to this plot on the tail end of a long running thread which has dropped off the front page now, so I thought I’s give it prominence today. It’s a ‘food for thought’ starter – the main course will be served as and when Paul has time.

Sun_Wind

It’s all coming together. Both Paul and I have been working on the sunspot integral over the last several years. Back in 2009 I found that by subtracting the average sunspot number at which the ocean neither gains nor loses energy from the monthly value and summing the running total, I could make use of the sunspot integral as a proxy for ocean heat content (OHC).

(more…)

Prolific solar-planetary scientist and long-time talkshop friend Nicola Scafetta has a new paper published in Physica A entitled ‘Global temperatures and sunspot numbers. Are they related? Yes, but non linearly. A reply to Gil-Alana et al. (2014)’ which comments on Gil-Alana et al 2014; a paper purporting to dismiss any correlation between solar activity and terrestrial surface temperature. Nicola gently points out the limitations of their methods and patiently explains how the astronomical-solar signal can be found in the data. Here is Figure 3 to whet your appetite:

 

scafetta-2014b-fig3

Fig. 3. (A) Annually solved HadCRUT3 global surface temperature record [34] from 1850 to 2013. (B) Power spectrum density functions calculated using the MEM method (using M = N/2 = 82) and the MTM periodogram f (p) [35,36]: the calculations were made with the SSA–MTM Toolkit. Several spectral peaks (e.g.: at about 9.1, 10.4, 20 and 60 yr) are statistically significant above the 95% confidence level, and their solar, lunar and astronomical origin is explained in the literature (e.g.: Scafetta [10,32,33,25]).

Nicola also provides plots of several of the various solar and temperature related indices and techniques for representing them over a wide range of timescales which clearly demonstrate the plain fact of the close coherence between the activity of our host star which supplies all our energy, and the fluctuations of the lovely moderate temperatures we live in on the surface of our planet.

(more…)

I found a book by Peter Hubers which uses Length of Day (LOD) variation as a case study in data analysis. It contains information which may be relevant to our ongoing investigation of the effects the spatio-temporal distribution of the planets may have on solar variation and terrestrial rotation and climatic variation.

Hubers cites a 1995 paper by Stephenson and Morrison and his own Hubers 2006 paper which reconstructs the long term variation and decadal in LOD from ancient and modern astronomical records of eclipses in the figure below, which I have annotated in red to show the inexact nature of the periodicity of the ‘cycle’.

lod-hubers

 

The Moon is responsible for the secular +2.3ms/cy in LOD with the post glacial rebound responsible for approximately -0.6ms/cy

 

 

(more…)