Archive for the ‘moon’ Category

Credit: reference.com


There are many reasons NASA is pursuing the Artemis mission to land astronauts on the moon by 2024: It’s a crucial way to study the moon itself and to pave a safe path to Mars, says Phys.org.

But it’s also a great place to learn more about protecting Earth, which is just one part of the larger Sun-Earth system.

Heliophysicists—scientists who study the Sun and its influence on Earth—will also be sending up their own NASA missions as part of Artemis. Their goal is to better understand the complex space environment surrounding our planet, much of which is driven by our Sun.

(more…)


Thanks to Ian Wilson for introducing us to his new paper, which is part three of the planned four-part series. The paper can be downloaded from The General Science Journal here. Abstract below.

Abstract

The best way to study the changes in the climate “forcings” that impact the Earth’s mean atmospheric temperature is to look at the first difference of the time series of the world-mean temperature, rather than the time series itself.

Therefore, if the Perigean New/Full Moon cycles were to act as a forcing upon the Earth’s atmospheric temperature, you would expect to see the natural periodicities of this tidal forcing clearly imprinted upon the time rate of change of the world’s mean temperature.

Using both the adopted mean orbital periods of the Moon, as well as calculated algorithms based upon published ephemerides, this paper shows that the Perigean New/Full moon tidal cycles exhibit two dominant periodicities on decadal time scales.

(more…)

Image credit: farmersalmanac.com


The Harvest Moon is the Full Moon nearest to the September equinox, which occurs around September 22.

The UK is set to be treated to a rare occurrence of a Harvest Moon tonight.

The Moon will be about 14 per cent smaller in the sky than an average full moon, making it an especially rare “micromoon”, says the London Evening Standard.

Maine Farmers’ Almanac astronomer Joe Rao said the time it peaks will depend on the position of the moon.

(more…)

Image credit: naturalnavigator.com


The contention here is that in the time taken for 14 lunar nodal cycles, the difference between the number of Saros eclipse cycles and lunar apsidal cycles (i.e the number of ‘beats’ of those two periods) is exactly 15.

Since 15-14 = 1, this period of 260.585 tropical years might itself be considered a cycle. It is just over 9 Inex eclipse cycles (260.5 years) of 358 synodic months each, by definition.

Although it’s hard to find references to ~260 years as a possible climate and/or planetary period, there are a few for the half period i.e. 130 years, for example here.

(more…)

The Kepler-42 system as compared to the Jovian system [credit: NASA/JPL-Caltech]

The headline was NASA’s joke about both the size and the short orbit periods (all less than two days) of the three planets in the Kepler-42 system.

The discovery of this system dates back to 2012, but there don’t seem to be any numbers on resonant periods, so we’ll supply some now.

Wikipedia says:
‘Kepler-42, formerly known as KOI-961, is a red dwarf located in the constellation Cygnus and approximately 131 light years from the Sun. It has three known extrasolar planets, all of which are smaller than Earth in radius, and likely also in mass.’

‘On 10 January 2012, using the Kepler Space Telescope three transiting planets were discovered in orbit around Kepler-42. These planets’ radii range from approximately those of Mars to Venus. The Kepler-42 system is only the second known system containing planets of Earth’s radius or smaller (the first was the Kepler-20 system). These planets’ orbits are also compact, making the system (whose host star itself has a radius comparable to those of some hot Jupiters) resemble the moon systems of giant planets such as Jupiter or Saturn more than it does the Solar System.’

The three planets in order of distance from their star (nearest first) are c,b and d. They all have very short orbit periods ranging from under half a day to less than two days, and the star has only 13% of the power of our Sun.

(more…)

Image credit: interactivestars.com


In 2015 this post discussed long-term lunar precession from an apsidal, or anomalistic, standpoint.

We saw that all the numbers related to an exact number (339) of Metonic cycles (19 tropical years each, as discussed below).

Here we show the equivalent from a nodal, or draconic, standpoint.

Again, all the numbers relate to an exact number (337 this time) of Metonic cycles.

(more…)

.
.
Plus: how big will the bite of the ongoing solar minimum be, compared to the last one? We’re due to find out sometime soon.

Spaceweather.com

July 16, 2019: Note to astronauts: 2019 is not a good year to fly into deep space. In fact, it’s shaping up to be one of the worst of the Space Age.

The reason is, the solar cycle. One of the deepest Solar Minima of the past century is underway now. As the sun’s magnetic field weakens, cosmic rays from deep space are flooding into the solar system, posing potential health risks to astronauts.

NASA is monitoring the situation with a radiation sensor in lunar orbit. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) has been circling the Moon on NASA’s Lunar Reconnaissance Orbiter spacecraft since 2009. Researchers have just published a paper in the journal Space Weather describing CRaTER’s latest findings.

lroAbove: An artist’s concept of Lunar Reconnaissance Orbiter.

“The overall decrease in solar activity in this period has led to an increased flux of…

View original post 540 more words

Lift-off is scheduled for 2:51GMT on the 15th July 2019

Our friends Ned Nikolov and Karl Zeller will be keen to see the data from the Chandrayaan 2 lunar mission scheduled for take-off next week. Among many other experiments planned, the rover will be measuring surface thermal conductivity – a key factor in estimating the global lunar surface temperature.

The daily mail reports:

India’s space agency is preparing to launch its ambitious Chandrayaan-2 mission next week which is set to land near the currently unexplored south pole of the moon.

Chandrayaan-2 will blast off from the Satish Dhawan Space Center at Sriharikota on the country’s south west coast at 2.51am (10.21pm BST) on July 15.

(more…)

View from the Moon [credit: NASA]


Moons don’t generally ‘shrink’, so what’s going on here? The abstract of the research paper speaks of compressional stresses, but the only potential source of compression would seem to be the Earth. It’s known that ‘the crust on the far side is a lot thicker than it is on the near side’, as discussed here.

The moon is still tectonically active, like Earth, generating moonquakes as our planet creates earthquakes, a new study based on Apollo mission data found.

These moonquakes likely happen because the moon is quivering as it shrinks, researchers added.

On Earth, tectonic activity, such as earthquakes and volcanism, results from shuffling of the crust’s tectonic plates driven by the churning of the planet’s molten interior, says Charles Quoi at Space.com.

However, the moon is much smaller than Earth and therefore largely cooled off long ago, so one might not expect much, if any, tectonic activity.

(more…)

Lunar evections and the Saros cycle

Posted: May 7, 2019 by oldbrew in Maths, moon, solar system dynamics
Tags:

Credit: Matthew Zimmerman @ English Wikipedia


The Saros cycle can be used to predict eclipses of the Sun and Moon, and is usually defined as 223 lunar synodic months, or about 11 days over 18 years.

But there are a few other lunar-related periods which can used to arrive at 223.

One Saros cycle can be said to be the difference between the number of:
— anomalistic months and full moon cycles (239 – 16)
— draconic months and draconic years (242 – 19)
— tropical months and tropical years (241 – 18)

That may be fairly well known, but then there are the lunar evections.

(more…)

Earth from the Moon [image credit: NASA]


Part 3

To recap, the Lucas series starts: 2, 1, 3, 4, 7, 11, 18, 29 … (adding the last two numbers each time to find the next number in the series).

Note: for clarity, the three parts of this mini-series should be read in order (links below).

Since Part 1 showed that 7 Jupiter-Saturn conjunctions (J-S) = 11 * 13 lunar tropical years (LTY), and from Part 2 we know that 363 LTY = 353 Earth tropical years (TY), these numbers of occurrences can be integrated by applying another multiple of 13:
363 = 3*11*11 LTY
therefore
353 * 13 TY = 3*11*11*13 LTY = 3*7*11 J-S

7 and 11 are Lucas numbers.
13 is a Fibonacci number.
3 belongs to both series.

(more…)

The Lucas spiral, made with quarter-arcs, is a good approximation of the golden spiral when its terms are large [credit: Wikipedia]


Here we show numerical connections between the Moon, the Earth and Venus. These will be carried forward into part 2 of the post. The focus is on the smaller Lucas numbers (3-18).

Wikipedia says: The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values.

A look at the numbers:
19 Venus rotations = 169 (13²) lunar rotations
Lunar tropical year = 13 lunar rotations / orbits (1 rotation = 1 orbit)
So: 19 Venus rotations = 13 Lunar tropical years
(13 is a Fibonacci number. The Lunar tropical year is derived from the nearest whole number of lunar orbits to one Earth orbit.)

169 * 27.321582 = 4617.3473 days (Data source)
19 * 243.018 = 4617.342 days (Data source)

Now we bring in the Chandler wobble:
13*3 = 39
39 Lunar tropical years = 32 Chandler wobbles
19*3 = 57

Referring to the chart on the right:
7 and 18 are Lucas numbers.
This theme will continue in part 2 of the post.

(32 + 57 = 89 axial, and 89 is a Fibonacci number. In 1/89th of the period the sum of CW and Ve(r) occurrences is 1).

Re. the period of the Chandler wobble:
39 LTY / 32 CW = (169 * 3 * 27.321582) / 32 = 432.8763 days

Or, if we say 27 Chandler wobbles = 32 Earth tropical years:
(365.24219 * 32) / 27 = 432.8796 days

The two results are almost identical (Wikipedia rounds it to 433 days).

Note:
353 Earth tropical years (ETY) = 363 Lunar tropical years = 10 beats
1 beat = 35.3 ETY which is linked to the Chandler Wobble
See: Sidorenkov – THE CHANDLER WOBBLE OF THE POLES AND ITS AMPLITUDE MODULATION

These numbers also feed into part 2 of the post, with more planetary links.

View from the Moon [credit: NASA]


Quoting from another report: ‘Data from the Apollo missions had already revealed that the moon’s sunlit surface can climb to 260 degrees Fahrenheit (127 degrees Celsius) during the day, and drop to minus 280 F (minus 173 C) at night. But all of that data comes from the side of the moon that faces Earth.’ They think the answer to the mystery lies in the soil, which might raise other questions about the rotating sphere with no ‘sides’ that the lander is on.

China’s lunar lander has woken from a freezing fortnight-long hibernation to find night-time temperatures on the moon’s dark side are colder than previously thought, the national space agency said Thursday.

The Chang’e-4 probe—named after a Chinese moon goddess—made the first ever soft landing on the far side of the moon on January 3, a major step in China’s ambitions to become a space superpower, says Phys.org.

(more…)


This was a surprise, but whatever the interpretation, the numbers speak for themselves.

‘Richard Christopher Carrington determined the solar rotation rate from low latitude sunspots in the 1850s and arrived at 25.38 days for the sidereal rotation period. Sidereal rotation is measured relative to the stars, but because the Earth is orbiting the Sun, we see this period as 27.2753 days.’ – Wikipedia.

What happens if we relate this period to the lunar draconic year?

(more…)

Image credit: interactivestars.com


It turns out that the previous post was only one half of the lunar evection story, so this post is the other half.

There are two variations to lunar evection, namely evection in longitude (the subject of the previous post) and evection in latitude, which ‘generates a perturbation in the lunar ecliptic latitude’ (source).

It’s found that the first is tied to the full moon cycle and the second to the draconic year.

(more…)

Why Phi? – a lunar evection model

Posted: November 16, 2018 by oldbrew in Fibonacci, moon, Phi, solar system dynamics
Tags: ,

Apogee = position furthest away from Earth. Earth. Perihelion = position closest to the sun. Moon. Perigee = position closest to Earth. Sun. Aphelion = position furthest away from the sun. (Eccentricities greatly exaggerated!)

Lunar evection has been described as the solar perturbation of the lunar orbit.

One lunar evection is the beat period of the synodic month and the full moon cycle. The result is that it should average about 31.811938 days (45809.19 minutes).

Comparing synodic months (SM), anomalistic months (AM), and lunar evections (LE) with the full moon cycle (FMC) we find:
1 FMC = 13.944335 SM
1 FMC = 13.944335 + 1 = 14.944335 AM
1 FMC = 13.944335 – 1 = 12.944335 LE

Since 0.944335 * 18 = 16.9983 = 99.99% of 17, and 18 – 17 = 1, we can say for our model:
18 FMC = 233 LE (18*13, -1) = 251 SM (18*14, -1) = 269 AM (18*15, -1)
See: 3 – Matching synodic and anomalistic months.
(more…)

Why Phi: is the Moon a phi balloon? – part 2

Posted: November 9, 2018 by oldbrew in Astrophysics, moon, Phi
Tags: ,

Credit: universetoday.com


Picking up from where we left off here

Three well-known aspects of lunar motion are:
Lunar declination – minimum and maximum degrees
Orbital parameters – perigee and apogee distances (from Earth)
Anomalistic month – minimum and maximum days

Standstill limits due to the lunar nodal cycle

‘The major standstill limit of the moon can be reached if the lunar node is near the vernal (or autumnal) point, and with the moon at its max. distance from the equator, equal to a declination at present days of 23.44° + 5.1454°= 28.59°.

The minor standstill limit of the moon can be reached if the lunar node is near the vernal (or autumnal) point, and with the moon at its min. distance from the equator, equal to a declination at present days of 23.44°- 5.1454° = 18.29°.’
http://iol.ie/~geniet/eng/moonperb.htm#nodes

28.59 / 18.29 = 1.5631492
4th root of 1.5631492 = 1.11815
This number leads to the key to the puzzle.

(more…)

Ian Robert George Wilson and Nikolay S Sidorenkov

Wilson and Sidorenkov, J Earth Sci Clim Change 2018, 9:1, p. 446

https://www.omicsonline.org/open-access/a-lunisolar-connection-to-weather-and-climate-i-centennial-times-scales-2157-7617-1000446.pdf

Abstract

Lunar ephemeris data is used to find the times when the Perigee of the lunar orbit points directly toward or away from the Sun, at times when the Earth is located at one of its solstices or equinoxes, for the period from 1993 to 2528 A.D. The precision of these lunar alignments is expressed in the form of a lunar alignment index (ϕ). When a plot is made of ϕ, in a frame-of-reference that is fixed with respect to the Perihelion of the Earth’s orbit, distinct periodicities are seen at 28.75, 31.0, 88.5 (Gleissberg Cycle), 148.25, and 208.0 years (de Vries Cycle). The full significance of the 208.0-year repetition pattern in ϕ only becomes apparent when these periodicities are compared to those observed in the spectra for two proxy time series. The first is the amplitude spectrum of the maximum daytime temperatures (Tm ) on the Southern Colorado Plateau for the period from 266 BC to 1997 AD. The second is the Fourier spectrum of the solar modulation potential (ϕm) over the last 9400 years. A comparison between these three spectra shows that of the nine most prominent periods seen in ϕ, eight have matching peaks in the spectrum of ϕm, and seven have matching peaks in the spectrum of Tm. This strongly supports the contention that all three of these phenomena are related to one another. A heuristic Luni-Solar climate model is developed in order to explain the connections between ϕ, Tm and ϕm.

Wilson_Sidorenkov_Fig_04

(more…)

Credit: NASA


Researchers say: ‘Study of wave characteristics reveals complex interconnections between the Sun, Moon, and Earth’s neutral atmosphere and ionosphere.’

The waves in the upper atmosphere are similar to the V-shaped waves left behind by a ship moving through water, reports The IB Times.

The 21 August total solar eclipse that overshadowed the entire stretch from Oregon to South Carolina, not only offered some mind-boggling views, but also left a weird effect on Earth’s atmosphere.

The event created heat-energy ripples or “bow waves”, something akin to the V-shaped waves left behind by a ship moving through water, in Earth’s upper atmosphere, Gizmodo reports.

(more…)


This started as a search for a period when the Sun and the Moon would both complete a whole number of rotations.
The result was:
Solar: 25.38 days * 197 = 4999.860 d
Lunar: 27.321662 * 183 = 4999.864 d
(data sources: see reference notes at end)

Taking these as equivalent, we have 197-183 = 14 ‘beats’.
197 = 14*14, +1
183 = 13*14, +1
4999.864 / 14 = 357.13314 days
357.13314 days * 45/44 = 365.2498 days
45 * 14 (630) beats = 44 * 14 (616) calendar years, difference = 0.022 day

So the beat period of the two rotations is 44/45ths of a year, i.e. the difference in number of rotations is exactly 1 in that length of time.
630 beats = 616 years (630 – 616 = 14)
616/45 = 13.68888 calendar years = 4999.8663 days
184 lunar sidereal months (rotations) = 4999.864 days

Then something else popped up…

The Phi factor:
‘We recover a 22.14-year cycle of the solar dynamo.’ (2016 paper)
See: Why Phi? – modelling the solar cycle

Solar Hale cycle = ~22.14 years (est. mean)
13.68888 * Phi = 22.149~ years
22.14 / 13.68888 = 1.61737 (99.96% of Phi)
(55/34 = 1.617647)

From the same post:
Jupiter-Saturn axial period (J+S) is 8.456146 years.
That’s when the sum of J and S orbital movement in the conjunction period = 1

13.68888 / 8.456146 = 1.618808
Phi = 1.618034

Conclusion:
This cycle of solar and lunar sidereal rotation (SRC) sits at the mid-point of the Phi²:1 ratio between the J+S axial period and the mean solar Hale cycle, i.e. with a Phi ratio to one and inverse Phi to the other.
SRC = (J+S) * Phi
SRC = Hale / Phi
SRC = Hale – (J+S)
(Mean Hale value is assumed)

In a period of 616 years there are 45 SRC.
The period is 44 * 14 years = 45 SRC = 45 * 14 beats.
SRC * (45/44) = 14 years.

Cross-checks:
Carrington rotations per 616 y = 8249
8249 CR / 45 = 4999.865 days

Synodic months per 616 y = 7619
7619 SM / 45 = 4999.856 days
8249 – 7619 = 630 = 45 * 14

45*183 sidereal months = 8235
8235 – 7619 = 616
8249 CR – 8235 Sid.M = 14
Beat period of CR and Sid.M = 616/14 = 44 years = 45 * (13.6888 / 14)
Every 44 years there will be exactly one less lunar rotation (sidereal month) than the number of Carrington rotations.

8249 CR – 7619 synodic months = 630 = 45 * 14
630 – 616 = 14
– – –
The anomalistic year

The beat period of the tropical month and solar sidereal rotation * 45/44 = the anomalistic year.
(27.321582 * 25.38) / (27.321582 – 25.38) = 357.14265 days
45 * 357.14265 = 16071.419 days
44 * 365.259636 = 16071.423 days

The anomalistic year is the time taken for the Earth to complete one revolution with respect to its apsides. The orbit of the Earth is elliptical; the extreme points, called apsides, are the perihelion, where the Earth is closest to the Sun (January 3 in 2011), and the aphelion, where the Earth is farthest from the Sun (July 4 in 2011). The anomalistic year is usually defined as the time between perihelion passages. Its average duration is 365.259636 days (365 d 6 h 13 min 52.6 s) (at the epoch J2011.0).
http://en.wikipedia.org/wiki/Year#Sidereal.2C_tropical.2C_and_anomalistic_years
– – –
Data sources

— Carrington Solar Coordinates:
Richard C. Carrington determined the solar rotation rate by watching low-latitude sunspots in the 1850s. He defined a fixed solar coordinate system that rotates in a sidereal frame exactly once every 25.38 days (Carrington, Observations of the Spots on the Sun, 1863, p 221, 244). The synodic rotation rate varies a little during the year because of the eccentricity of the Earth’s orbit; the mean synodic value is about 27.2753 days.
http://wso.stanford.edu/words/Coordinates.html

— The standard meridian on the sun is defined to be the meridian that passed through the ascending node of the sun’s equator on 1 January 1854 at 1200 UTC and is calculated for the present day by assuming a uniform sidereal period of rotation of 25.38 days (synodic rotation period of 27.2753 days, Carrington rotation).
http://jgiesen.de/sunrot/index.html

The sidereal month is the time between maximum elevations of a fixed star as seen from the Moon. In 1994-1998, it was 27.321662 days.
http://scienceworld.wolfram.com/astronomy/SiderealMonth.html